Abstract

In this paper, metallic photonic crystals (PC) based on 2-D periodic arrays of gold nanoparticles were investigated on indium tin oxide slab waveguides using 3-D finite-difference time domain simulations with nonuniform mesh techniques. The PC effects were studied by changing the lattice constants from 300 to 500 nm. The results obtained indicate that the waveguide-excited plasmon absorption peak of periodic array of gold nanoparticles is tunable from 672 to 707 nm due to the second grating order propagating backward at the grazing angle. The nanoparticle-induced extinction of the waveguide mode was also investigated by varying the slab thickness from 100 to 375 nm. The results show that the extinction peak shifts from 650 to 705 nm. The theoretical results predict that the interactions of the periodic array of gold nanoparticles are strongly affected by the dispersion of the waveguide.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000).
  2. S. Linden, A. Christ, J. Kuhl, H. Giessen, "Selective suppression of extinction within the plasmon resonance of gold nanoparticles," Appl. Phys. B 73, 311-316 (2001).
  3. S. Linden, J. Kuhl, H. Giessen, "Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction," Phys. Rev. Lett. 73, 311-316 (2001).
  4. N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, F. R. Aussenegg, "Grating-induced plasmon mode in gold nanoparticle arrays," J. Chem. Phys. 123, 221103.1-221103.5 (2005).
  5. Y. Liu, C. D. Sarris, G. V. Eleftheriades, "Triangular-mesh-based FDTD analysis of two-dimensional plasmonic structures supporting backward waves at optical frequencies," J. Lightw. Technol. 25, 938-945 (2007).
  6. A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, M. L. Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416.1-085416.7 (2005).
  7. K.-Y. Jung, F. L. Teixeira, "Multispecies ADI-FDTD algorithm for nanoscale three-dimensional photonic metallic structures," IEEE Photon. Technol. Lett. 19, 586-588 (2007).
  8. P. B. Johnson, R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
  9. J. Homola, J. hyrok, M. Skalsw, J. Hradilova, P. Kolarova, "A surface plasmon resonance based integrated optical sensor," Sens. Actuators B 38–39, 286-290 (1997).
  10. J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, J. Schrofel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Acuators B 76, 8-12, 2001.
  11. J. C. Abanulo, R. D. Harris, P. N. Bartlett, J. S. Wilkinson, "Waveguide surface plasmon resonance sensor for electrochemically controlled surface reactions," Appl. Opt. 40, 6242-6245 (2001).
  12. M. Skorobogatiya, A. V. Kabashin, "Photon crystal waveguide-based surface plasmon resonance biosensor," Appl. Phys. Lett. 89, 143518-143518 (2006).
  13. P. Debackere, S. Scheerlinck, P. Bienstman, R. Baets, "Surface plasmon interferometer in silicon-on-insulator: Novel concept for an integrated biosensor," Opt. Exp. 15, 13651-13653 (2007).
  14. T. Okamoto, I. Yamaguchi, T. Kobayashi, "Local plasmon sensor with gold colloid monolayers deposited upon glass substrates," Opt. Lett. 25, 372-374 (2000).
  15. D. K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y. S. Kwon, E. Tamiya, "Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry," Anal. Chem. 79, 1855-1864 (2007).

2007 (4)

Y. Liu, C. D. Sarris, G. V. Eleftheriades, "Triangular-mesh-based FDTD analysis of two-dimensional plasmonic structures supporting backward waves at optical frequencies," J. Lightw. Technol. 25, 938-945 (2007).

K.-Y. Jung, F. L. Teixeira, "Multispecies ADI-FDTD algorithm for nanoscale three-dimensional photonic metallic structures," IEEE Photon. Technol. Lett. 19, 586-588 (2007).

P. Debackere, S. Scheerlinck, P. Bienstman, R. Baets, "Surface plasmon interferometer in silicon-on-insulator: Novel concept for an integrated biosensor," Opt. Exp. 15, 13651-13653 (2007).

D. K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y. S. Kwon, E. Tamiya, "Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry," Anal. Chem. 79, 1855-1864 (2007).

2006 (1)

M. Skorobogatiya, A. V. Kabashin, "Photon crystal waveguide-based surface plasmon resonance biosensor," Appl. Phys. Lett. 89, 143518-143518 (2006).

2005 (2)

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, M. L. Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416.1-085416.7 (2005).

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, F. R. Aussenegg, "Grating-induced plasmon mode in gold nanoparticle arrays," J. Chem. Phys. 123, 221103.1-221103.5 (2005).

2001 (3)

S. Linden, A. Christ, J. Kuhl, H. Giessen, "Selective suppression of extinction within the plasmon resonance of gold nanoparticles," Appl. Phys. B 73, 311-316 (2001).

S. Linden, J. Kuhl, H. Giessen, "Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction," Phys. Rev. Lett. 73, 311-316 (2001).

J. C. Abanulo, R. D. Harris, P. N. Bartlett, J. S. Wilkinson, "Waveguide surface plasmon resonance sensor for electrochemically controlled surface reactions," Appl. Opt. 40, 6242-6245 (2001).

2000 (2)

T. Okamoto, I. Yamaguchi, T. Kobayashi, "Local plasmon sensor with gold colloid monolayers deposited upon glass substrates," Opt. Lett. 25, 372-374 (2000).

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000).

1997 (1)

J. Homola, J. hyrok, M. Skalsw, J. Hradilova, P. Kolarova, "A surface plasmon resonance based integrated optical sensor," Sens. Actuators B 38–39, 286-290 (1997).

1972 (1)

P. B. Johnson, R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).

Anal. Chem. (1)

D. K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y. S. Kwon, E. Tamiya, "Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry," Anal. Chem. 79, 1855-1864 (2007).

Appl. Phys. B (1)

S. Linden, A. Christ, J. Kuhl, H. Giessen, "Selective suppression of extinction within the plasmon resonance of gold nanoparticles," Appl. Phys. B 73, 311-316 (2001).

Appl. Phys. Lett. (1)

M. Skorobogatiya, A. V. Kabashin, "Photon crystal waveguide-based surface plasmon resonance biosensor," Appl. Phys. Lett. 89, 143518-143518 (2006).

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

K.-Y. Jung, F. L. Teixeira, "Multispecies ADI-FDTD algorithm for nanoscale three-dimensional photonic metallic structures," IEEE Photon. Technol. Lett. 19, 586-588 (2007).

J. Chem. Phys. (1)

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, F. R. Aussenegg, "Grating-induced plasmon mode in gold nanoparticle arrays," J. Chem. Phys. 123, 221103.1-221103.5 (2005).

J. Lightw. Technol. (1)

Y. Liu, C. D. Sarris, G. V. Eleftheriades, "Triangular-mesh-based FDTD analysis of two-dimensional plasmonic structures supporting backward waves at optical frequencies," J. Lightw. Technol. 25, 938-945 (2007).

Opt. Exp. (1)

P. Debackere, S. Scheerlinck, P. Bienstman, R. Baets, "Surface plasmon interferometer in silicon-on-insulator: Novel concept for an integrated biosensor," Opt. Exp. 15, 13651-13653 (2007).

Opt. Lett. (1)

T. Okamoto, I. Yamaguchi, T. Kobayashi, "Local plasmon sensor with gold colloid monolayers deposited upon glass substrates," Opt. Lett. 25, 372-374 (2000).

Phys. Rev. B (1)

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, M. L. Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416.1-085416.7 (2005).

Phys. Rev. B (1)

P. B. Johnson, R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).

Phys. Rev. Lett. (2)

S. Linden, J. Kuhl, H. Giessen, "Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction," Phys. Rev. Lett. 73, 311-316 (2001).

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000).

Sens. Actuators B (1)

J. Homola, J. hyrok, M. Skalsw, J. Hradilova, P. Kolarova, "A surface plasmon resonance based integrated optical sensor," Sens. Actuators B 38–39, 286-290 (1997).

Sens. Acuators B (1)

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, J. Schrofel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Acuators B 76, 8-12, 2001.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.