Abstract

We design a nonlinear air-clad chalcogenide As<sub>2</sub>S<sub>3</sub> subwavelength diameter fiber, referred to as nanofiber or nanowire, and calculate the chromatic dispersion in it. The zero dispersion is achieved at the core size of 500 nm for this nanofiber at the telecommunication wavelength of 1.5 $\mu$m. We further present the flattening of the zero dispersion in the telecommunication window by cladding the As<sub>2</sub>S<sub>3</sub> core with borosilicate glass, the thermal properties of which match with those of the As<sub>2</sub>S<sub>3</sub> glass. Zero-flattened dispersion centered at 1.408 <i>µ</i>m wavelength can be tailored for the nanofiber with this new structure when the nanofiber core diameter is 724 nm.

© 2009 US

PDF Article

References

  • View by:
  • |
  • |

  1. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, B. J. Eggleton, "Enhanced Kerr nonlinearity in subwavelength diameter As2Se3 chalcogenide fiber tapers," Opt. Exp. 15, 10324-10329 (2007).
  2. C. Florea, M. Bashkansky, Z. Dutton, J. Sanghera, P. Pureza, I. Aggarwal, "Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers," Opt. Exp. 14, 12063-12070 (2006).
  3. M. R. Lamont, C. M. de Sterke, B. J. Eggleton, "Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion," Opt. Exp. 15, 9458-9463 (2007).
  4. T. Yamashita, Y. Ohishi, "Cooperative energy transfer between Tb$^{3+}$ and Yb$^{3+}$ ions co-doped in borosilicate glass," J. Non-Cryst. Solids 354, 1883-1890 (2008).
  5. W. S. Rodney, I. H. Malitson, T. A. King, J. Opt. Soc. Amer. 48, 633-636 (1958).
  6. T. Yamashita, Y. Ohishi, “Refractive index of borosilicate glass,” .
  7. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

2008 (1)

T. Yamashita, Y. Ohishi, "Cooperative energy transfer between Tb$^{3+}$ and Yb$^{3+}$ ions co-doped in borosilicate glass," J. Non-Cryst. Solids 354, 1883-1890 (2008).

2007 (2)

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, B. J. Eggleton, "Enhanced Kerr nonlinearity in subwavelength diameter As2Se3 chalcogenide fiber tapers," Opt. Exp. 15, 10324-10329 (2007).

M. R. Lamont, C. M. de Sterke, B. J. Eggleton, "Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion," Opt. Exp. 15, 9458-9463 (2007).

2006 (1)

C. Florea, M. Bashkansky, Z. Dutton, J. Sanghera, P. Pureza, I. Aggarwal, "Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers," Opt. Exp. 14, 12063-12070 (2006).

1958 (1)

W. S. Rodney, I. H. Malitson, T. A. King, J. Opt. Soc. Amer. 48, 633-636 (1958).

J. Non-Cryst. Solids (1)

T. Yamashita, Y. Ohishi, "Cooperative energy transfer between Tb$^{3+}$ and Yb$^{3+}$ ions co-doped in borosilicate glass," J. Non-Cryst. Solids 354, 1883-1890 (2008).

J. Opt. Soc. Amer. (1)

W. S. Rodney, I. H. Malitson, T. A. King, J. Opt. Soc. Amer. 48, 633-636 (1958).

Opt. Exp. (1)

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, B. J. Eggleton, "Enhanced Kerr nonlinearity in subwavelength diameter As2Se3 chalcogenide fiber tapers," Opt. Exp. 15, 10324-10329 (2007).

Opt. Exp. (2)

C. Florea, M. Bashkansky, Z. Dutton, J. Sanghera, P. Pureza, I. Aggarwal, "Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers," Opt. Exp. 14, 12063-12070 (2006).

M. R. Lamont, C. M. de Sterke, B. J. Eggleton, "Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion," Opt. Exp. 15, 9458-9463 (2007).

Other (2)

T. Yamashita, Y. Ohishi, “Refractive index of borosilicate glass,” .

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.