Abstract

A new design of multicore photonic crystal fibers (PCFs) is proposed and investigated through full-vectorial finite-element method and finite-element beam propagation method. The fiber design comprises four identical cores surrounding a central core. The optical power launched into the central core is equally divided into other neighboring four cores with a 25% of coupling ratio. The coupled-mode analysis is also carried out to understand the supermode patterns and the coupling characteristics. Through numerical simulations, it is demonstrated that the optical power can be divided equally in a 5.8-mm-long multicore PCF. The power coupling characteristics obtained through coupled-mode analysis are in very good agreement with those calculated from beam propagation method solver.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. D. B. Mortimore, "Wavelength-flattened fused couplers," Electron. Lett. 21, 742-743 (1985).
  2. R. Zengerle, O. G. Leminger, "Narrow-band wavelength-selective directional couplers made of dissimilar single-mode fibers," J. Lightw. Technol. LT-5, 1196-1198 (1987).
  3. D. B. Mortimore, "Theory and fabrication of 4 x 4 single-mode fused optical fiber couplers," Appl. Opt. 29, 371-374 (1990).
  4. D. B. Mortimore, J. W. Arkwright, "Monolithic wavelength-falttened 1 x 7 single-mode fused fiber couplers: Theory, fabrication, and analysis," Appl. Opt. 30, 650-659 (1991).
  5. A. Kumar, R. K. varshney, R. K. Sinha, "Scalar modes and coupling characteristics of eight-port waveguide couplers," J. Lightw. Technol. 7, 293-296 (1989).
  6. P. St. J. Russell, "Photonic-crystal fibers," J. Lightw. Technol. 24, 4729-4749 (2006).
  7. K. Saitoh, Y. Sato, M. Koshiba, "Coupling characteristics of dual-core photonic crystal fiber couplers," Opt. Express 11, 3188-3195 (2003).
  8. J. Lægsgaard, O. Bang, A. Bjarklev, "Photonic crystal fiber design for broadband directional coupling," Opt. Lett. 29, 2473-2475 (2004).
  9. S. K. Varshney, N. J. Florous, K. Saitoh, M. Koshiba, "The impact of elliptical deformations for optimizing the performance of dual-core fluorine-doped photonic crystal fiber couplers," Opt. Express 14, 1982-1995 (2006).
  10. K. Saitoh, N. J. Florous, S. K. Varshney, M. Koshiba, "Tunable photonic crystal fiber couplers with a thermo-responsive liquid crystal resonator," J. Lightw. Technol. 26, 663-669 (2008).
  11. K. Saitoh, N. J. Florous, M. Koshiba, M. Skorobogatiy, "Design of narrow band-pass filters based on the resonant-tunneling phenomenon in multi-core photonic crystal fibers," Opt. Express 13, 10327-10335 (2005).
  12. A. V. Husakou, J. Herrmann, "Frequency comb generation by four-wave mixing in a multi-core photonic crystal fibers," Appl. Phys. Lett. 83, 3867-3869 (2003).
  13. A. Mafi, J. V. Moloney, "Phase locking in a passive multicore photonic crystal fiber," J. Opt. Soc. Amer. B 21, 897-902 (2004).
  14. L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shepherd, B. G. Ward, "Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area," Opt. Lett. 33, 71-73 (2008).
  15. K. Saitoh, M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
  16. K. Saitoh, M. Koshiba, "Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides," J. Lightw. Technol. 19, 405-413 (2001).
  17. A. W. Snyder, "Coupled-mode theory for optical fibers," J. Opt. Soc. Amer. 62, 1267-1277 (1972).

2008 (2)

K. Saitoh, N. J. Florous, S. K. Varshney, M. Koshiba, "Tunable photonic crystal fiber couplers with a thermo-responsive liquid crystal resonator," J. Lightw. Technol. 26, 663-669 (2008).

L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shepherd, B. G. Ward, "Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area," Opt. Lett. 33, 71-73 (2008).

2006 (2)

2005 (1)

2004 (2)

A. Mafi, J. V. Moloney, "Phase locking in a passive multicore photonic crystal fiber," J. Opt. Soc. Amer. B 21, 897-902 (2004).

J. Lægsgaard, O. Bang, A. Bjarklev, "Photonic crystal fiber design for broadband directional coupling," Opt. Lett. 29, 2473-2475 (2004).

2003 (2)

K. Saitoh, Y. Sato, M. Koshiba, "Coupling characteristics of dual-core photonic crystal fiber couplers," Opt. Express 11, 3188-3195 (2003).

A. V. Husakou, J. Herrmann, "Frequency comb generation by four-wave mixing in a multi-core photonic crystal fibers," Appl. Phys. Lett. 83, 3867-3869 (2003).

2002 (1)

K. Saitoh, M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).

2001 (1)

K. Saitoh, M. Koshiba, "Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides," J. Lightw. Technol. 19, 405-413 (2001).

1991 (1)

1990 (1)

1989 (1)

A. Kumar, R. K. varshney, R. K. Sinha, "Scalar modes and coupling characteristics of eight-port waveguide couplers," J. Lightw. Technol. 7, 293-296 (1989).

1987 (1)

R. Zengerle, O. G. Leminger, "Narrow-band wavelength-selective directional couplers made of dissimilar single-mode fibers," J. Lightw. Technol. LT-5, 1196-1198 (1987).

1985 (1)

D. B. Mortimore, "Wavelength-flattened fused couplers," Electron. Lett. 21, 742-743 (1985).

1972 (1)

A. W. Snyder, "Coupled-mode theory for optical fibers," J. Opt. Soc. Amer. 62, 1267-1277 (1972).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

A. V. Husakou, J. Herrmann, "Frequency comb generation by four-wave mixing in a multi-core photonic crystal fibers," Appl. Phys. Lett. 83, 3867-3869 (2003).

Electron. Lett. (1)

D. B. Mortimore, "Wavelength-flattened fused couplers," Electron. Lett. 21, 742-743 (1985).

IEEE J. Quantum Electron. (1)

K. Saitoh, M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).

J. Lightw. Technol. (1)

A. Kumar, R. K. varshney, R. K. Sinha, "Scalar modes and coupling characteristics of eight-port waveguide couplers," J. Lightw. Technol. 7, 293-296 (1989).

J. Lightw. Technol. (4)

P. St. J. Russell, "Photonic-crystal fibers," J. Lightw. Technol. 24, 4729-4749 (2006).

R. Zengerle, O. G. Leminger, "Narrow-band wavelength-selective directional couplers made of dissimilar single-mode fibers," J. Lightw. Technol. LT-5, 1196-1198 (1987).

K. Saitoh, N. J. Florous, S. K. Varshney, M. Koshiba, "Tunable photonic crystal fiber couplers with a thermo-responsive liquid crystal resonator," J. Lightw. Technol. 26, 663-669 (2008).

K. Saitoh, M. Koshiba, "Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides," J. Lightw. Technol. 19, 405-413 (2001).

J. Opt. Soc. Amer. B (1)

A. Mafi, J. V. Moloney, "Phase locking in a passive multicore photonic crystal fiber," J. Opt. Soc. Amer. B 21, 897-902 (2004).

J. Opt. Soc. Amer. (1)

A. W. Snyder, "Coupled-mode theory for optical fibers," J. Opt. Soc. Amer. 62, 1267-1277 (1972).

Opt. Express (3)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.