Abstract

This work describes a concept of a hierarchical radio-over-fiber (RoF) network architecture that provides both intra- and inter- network connectivity for end user wireline and wireless terminals with high-bandwidth, in-building access applications. An intelligent gateway router (IGR) is proposed as a unified platform to accommodate multi-gigabit, millimeter-wave services at 60-GHz band as well as being backward compatible with all current wireless access technologies such as WiFi and WiMAX. In addition, we further present an advanced multi-band optical carrier generation technique that can simultaneously deliver independent 60-GHz mm-wave, 2.4-GHz WiFi, and 5.8-GHz WiMAX signals efficiently carried over the same wavelength, and is suitable for the proposed IGR. Finally, we report, for the first time to our knowledge, a campus-wide field trial demonstration of RoF system transmitting uncompressed 270-Mbps standard definition (SD) and 1.485-Gbps high definition (HD) real-time video contents carried by 2.4-GHz radio and 60-GHz millimeter wave signals, respectively, between two on-campus research buildings distanced over 2.5-km standard single mode fiber (SMF-28) through the Georgia Institute of Technology's (GT) fiber network.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. Global IP Traffic Forecast and Methodology Cisco Systems 2006C2011 (2008).
  2. A. M. Odlyzko, "Internet traffic growth: Sources and implications," Proc. SPIE: Optical Transmission Systems and Equipment WDM Networking II (2003).
  3. J. McDonough, "Moving standards to 100 GbE and beyond," IEEE Commun. Mag. 45, 6-9 (2007).
  4. G.-K. Chang, A. Chowdhury, J. Yu, Z. Jia, R. Younce, "Next generation 100 Gbit/s ethernet technologies," APOC 2007 WuhanChina (2007) Invited Paper.
  5. G.-K. Chang, Z. Jia, J. Yu, A. Chowdhury, "Super broadband optical wireless access technologies," OFC/NFOEC 2008 Optical Soc. Amer., Washington, DC, 2008, on CD-ROM, OThD1.
  6. Z. Jia, J. Yu, G. Ellinas, G.-K. Chang, "Key enabling technologies for optical-wireless networks: Optical millimeter-wave generation, wavelength reuse and architecture," J. Lightw. Technol. 25, 3452-3471 (2007).
  7. T. Kuri, H. Toda, K.-I. Kitayama, "Novel demultiplexer for dense wavelength-division-multiplexed millimeter-wave-band radio-over-fiber systems with optical frequency interleaving techniques," IEEE Photon. Technol. Lett. 19, 2018-2020 (2007).
  8. M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, R. Waterhouse, "Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks," J. Lightw. Technol. 24, 3341-3352 (2006).
  9. Z. Jia, J. Yu, G. Ellinas, G.-K. Chang, "Key enabling technologies for optical–wireless networks: Optical millimeter-wave generation, wavelength reuse, and architecture," J. Lightw. Technol. 25, 3452-3471 (2007).
  10. M. J. Koonen, L. M. Garcia, "Radio-over-MMF techniques—Part II: Microwave to millimeter-wave systems," J. Lightw. Technol. 26, 2396-2408 (2008).
  11. M. J. Koonen, A. Ng'oma, G.-J. Rijckenberg, M. G. Larrode, P. J. Urban, H. de Waardt, J. Yang, H. Yang, H. P. A. van den Boom, "How deep should fibre go into the access network?," ECOC 2007 BerlinGermany (2007) Mo1.1.4.
  12. A. Das, A. Nkansah, N. J. Gomes, I. J. Garcia, J. C. Batchelor, D. Wake, "Design of low-cost multimode fiber-fed indoor wireless networks," IEEE Trans. Microw. Theory Tech. 54, 426-3432 (2006).
  13. M. J. Crisp, S. Li, A. Wonfor, R. V. Penty, I. H. White, "Demonstration of a radio over fibre distributed antenna network for combined in-building WLAN and 3G coverage," OFC 2007 Optical Soc. Amer., Washington, DC, 2007, on CD-ROM, JThA81.
  14. J. Laskar, S. Pinel, D. Dawn, S. Sarkar, B. Perumana, P. Sen, "The next wireless wave is a millimeter wave," Microw. J. 50, 22-35 (2007).
  15. G. Qi, "Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator," J. Lightw. Technol. 23, 2687-2695 (2005).
  16. J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, G.-K. Chang, "DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver," IEEE Photon. Technol. Lett. 18, 1418-1420 (2006).
  17. A. Chowdhury, H.-C. Chien, J. Yu, G.-K. Chang, "Novel 50-GHz spaced DWDM 60-GHz mm-wave RoF systems using optical interleaver," OFC 2009 Opt. Soc. Amer., Washington DC, 2009, on CD-ROM, OTuB1.

2008 (1)

M. J. Koonen, L. M. Garcia, "Radio-over-MMF techniques—Part II: Microwave to millimeter-wave systems," J. Lightw. Technol. 26, 2396-2408 (2008).

2007 (5)

J. Laskar, S. Pinel, D. Dawn, S. Sarkar, B. Perumana, P. Sen, "The next wireless wave is a millimeter wave," Microw. J. 50, 22-35 (2007).

J. McDonough, "Moving standards to 100 GbE and beyond," IEEE Commun. Mag. 45, 6-9 (2007).

Z. Jia, J. Yu, G. Ellinas, G.-K. Chang, "Key enabling technologies for optical-wireless networks: Optical millimeter-wave generation, wavelength reuse and architecture," J. Lightw. Technol. 25, 3452-3471 (2007).

T. Kuri, H. Toda, K.-I. Kitayama, "Novel demultiplexer for dense wavelength-division-multiplexed millimeter-wave-band radio-over-fiber systems with optical frequency interleaving techniques," IEEE Photon. Technol. Lett. 19, 2018-2020 (2007).

Z. Jia, J. Yu, G. Ellinas, G.-K. Chang, "Key enabling technologies for optical–wireless networks: Optical millimeter-wave generation, wavelength reuse, and architecture," J. Lightw. Technol. 25, 3452-3471 (2007).

2006 (3)

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, G.-K. Chang, "DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver," IEEE Photon. Technol. Lett. 18, 1418-1420 (2006).

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, R. Waterhouse, "Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks," J. Lightw. Technol. 24, 3341-3352 (2006).

A. Das, A. Nkansah, N. J. Gomes, I. J. Garcia, J. C. Batchelor, D. Wake, "Design of low-cost multimode fiber-fed indoor wireless networks," IEEE Trans. Microw. Theory Tech. 54, 426-3432 (2006).

2005 (1)

G. Qi, "Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator," J. Lightw. Technol. 23, 2687-2695 (2005).

IEEE Photon. Technol. Lett. (1)

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, G.-K. Chang, "DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver," IEEE Photon. Technol. Lett. 18, 1418-1420 (2006).

IEEE Commun. Mag. (1)

J. McDonough, "Moving standards to 100 GbE and beyond," IEEE Commun. Mag. 45, 6-9 (2007).

IEEE Photon. Technol. Lett. (1)

T. Kuri, H. Toda, K.-I. Kitayama, "Novel demultiplexer for dense wavelength-division-multiplexed millimeter-wave-band radio-over-fiber systems with optical frequency interleaving techniques," IEEE Photon. Technol. Lett. 19, 2018-2020 (2007).

IEEE Trans. Microw. Theory Tech. (1)

A. Das, A. Nkansah, N. J. Gomes, I. J. Garcia, J. C. Batchelor, D. Wake, "Design of low-cost multimode fiber-fed indoor wireless networks," IEEE Trans. Microw. Theory Tech. 54, 426-3432 (2006).

J. Lightw. Technol. (2)

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, R. Waterhouse, "Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks," J. Lightw. Technol. 24, 3341-3352 (2006).

M. J. Koonen, L. M. Garcia, "Radio-over-MMF techniques—Part II: Microwave to millimeter-wave systems," J. Lightw. Technol. 26, 2396-2408 (2008).

J. Lightw. Technol. (3)

Z. Jia, J. Yu, G. Ellinas, G.-K. Chang, "Key enabling technologies for optical–wireless networks: Optical millimeter-wave generation, wavelength reuse, and architecture," J. Lightw. Technol. 25, 3452-3471 (2007).

Z. Jia, J. Yu, G. Ellinas, G.-K. Chang, "Key enabling technologies for optical-wireless networks: Optical millimeter-wave generation, wavelength reuse and architecture," J. Lightw. Technol. 25, 3452-3471 (2007).

G. Qi, "Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator," J. Lightw. Technol. 23, 2687-2695 (2005).

Microw. J. (1)

J. Laskar, S. Pinel, D. Dawn, S. Sarkar, B. Perumana, P. Sen, "The next wireless wave is a millimeter wave," Microw. J. 50, 22-35 (2007).

Other (7)

M. J. Crisp, S. Li, A. Wonfor, R. V. Penty, I. H. White, "Demonstration of a radio over fibre distributed antenna network for combined in-building WLAN and 3G coverage," OFC 2007 Optical Soc. Amer., Washington, DC, 2007, on CD-ROM, JThA81.

A. Chowdhury, H.-C. Chien, J. Yu, G.-K. Chang, "Novel 50-GHz spaced DWDM 60-GHz mm-wave RoF systems using optical interleaver," OFC 2009 Opt. Soc. Amer., Washington DC, 2009, on CD-ROM, OTuB1.

M. J. Koonen, A. Ng'oma, G.-J. Rijckenberg, M. G. Larrode, P. J. Urban, H. de Waardt, J. Yang, H. Yang, H. P. A. van den Boom, "How deep should fibre go into the access network?," ECOC 2007 BerlinGermany (2007) Mo1.1.4.

G.-K. Chang, A. Chowdhury, J. Yu, Z. Jia, R. Younce, "Next generation 100 Gbit/s ethernet technologies," APOC 2007 WuhanChina (2007) Invited Paper.

G.-K. Chang, Z. Jia, J. Yu, A. Chowdhury, "Super broadband optical wireless access technologies," OFC/NFOEC 2008 Optical Soc. Amer., Washington, DC, 2008, on CD-ROM, OThD1.

Global IP Traffic Forecast and Methodology Cisco Systems 2006C2011 (2008).

A. M. Odlyzko, "Internet traffic growth: Sources and implications," Proc. SPIE: Optical Transmission Systems and Equipment WDM Networking II (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.