Abstract

In this paper, we theoretically design and numerically demonstrate a large mode area and single-mode erbium-doped photonic crystal fiber (PCF) amplifier operating in the S-band with a complete suppression of amplified spontaneous emission (ASE) and very low Raman gain coefficient at 980-nm pump. The proposed fiber design is based on a dual-concentric core refractive index profile and is solved through full-vectorial finite-element method. Numerical simulations reveal that more than 50 dB of gain can be achieved with a mean gain value of 27 dB over 70-nm bandwidth in a 7.2-m-long fiber. The effect of bending on the amplification characteristics has been noted. It has been shown that by a proper choice of the PCF profile parameters, the fiber amplifier can be made bend-insensitive for a bending radius as small as 5 cm. Further, our design guidelines should be useful to achieve a functional bend-insensitive fiber amplifier, where rack space is a premium and tight bending radius becomes inevitable.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription