Abstract

Non-conventional core-guided transmission windows within the visible spectral range are identified in commercial hollow-core photonic crystal fibers designed to operate at 1550 nm. These windows are likely to be related to higher-order cladding photonic bandgaps and are found to be highly dependent on the cladding microstructure, thus being affected by pressure-induced stress/deformation. 20-cm-long fiber samples are then used to demonstrate simple and temperature-independent hydrostatic pressure sensing with two different setups. While in the first setup pressure is externally applied to the fiber and results in operation in the hundreds of ${\rm kgf}/{\hbox {cm}} ^{2}$ (or tens of MPa) range, the second setup applies pressure directly to fiber internal microstructure and is sensitive to pressures down to a fraction of ${\rm kgf}/{\hbox {cm}} ^{2}$ (hundredths of MPa). The fact that pressure is directly transduced into transmitted power greatly simplifies the required sensor interrogation setup.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. B. Culshaw, "Optical fiber sensors technologies: Opportunities and – Perhaps – Pitfalls," J. Lightw. Technol. 22, 39-50 (2004).
  2. D. A. Krohn, Fiber Optic Sensors Fundamentals and Applications (Instrument Society of America, 2000).
  3. M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, "Optical in-fibre grating high pressure sensor," Electron. Lett. 29, 398-399 (1993).
  4. W. J. Bock, "High-pressure polarimetric sensor using birefringent optical fibers," IEEE Trans. Instrum. Meas. 39, 233-237 (1990).
  5. Y. S. Hsu, L. Wang, W. Liu, Y. J. Chiang, "Temperature compensation of optical fiber Bragg grating pressure sensor," IEEE Photon. Technol. Let. 18, 874-876 (2006).
  6. T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, H. Thienpont, "Temperature and pressure sensitivies of the highly birefringent photonic crystal fiber with core asymmetry," Appl. Phys. B 81, 325-331 (2005).
  7. W. J. Bock, J. Chen, T. Eftimov, W. Urbanczyk, "A photonic crystal fiber sensor for pressure measurements," IEEE Trans. Instrum. Meas. 55, 874-876 (2006).
  8. Y. S. Shinde, H. K. Gahir, "Dynamic pressure sensing using photonic crystal fiber: Application to Tsunami sensing," IEEE Photon. Technol. Lett. 20, 279-281 (2008).
  9. J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
  10. C. Martelli, J. Canning, K. Lyytikainen, N. Groothoff, "Water-core Fresnel fiber," Opt. Exp. 13, 3890-3895 (2005).
  11. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, A. Bjarklev, "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Exp. 13, 5883-5889 (2005).
  12. F. M. Cox, A. Argyros, M. C. J. Large, S. Kalluri, "Surface enhanced Raman scattering in a hollow core microstructured optical fiber," Opt. Exp. 15, 13675-13681 (2007).
  13. C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, C. H. Brito Cruz, "Towards practical liquid and gas sensing with photonic crystal fibres: Side access to the fibre microstructure and single-mode liquid-core fibre," Meas. Sci. Technol. 18, 3075-3081 (2007).
  14. F. Du, Y.-Q. Lu, S.-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
  15. Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, X. Dong, "Environmentally stable Fabry-Pérot-type strain based on hollow-core photonic bandgap fiber," IEEE Photon. Technol. Let. 20, 237-239 (2008).
  16. H. K. Kim, M. J. F. Digonnet, G. S. Kino, "Air-core photonic-bandgap fiber-optic gyroscope," J. Lightw. Technol. 24, 3169-3174 (2006).
  17. G. Antonopoulos, F. Benabid, T. A. Birks, D. M. Bird, G. Bouwmans, J. C. Knight, P. S. J. Russell, "Experimental demonstration of refractive index scaling in photonic bandgap fibres," Conf. Lasers Electro-Optics 2004 (2004) Paper CThHH1.
  18. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, P. S. J. Russell, "All-solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004).
  19. A. S. Cerqueira Jr., F. Luan, C. M. B. Cordeiro, A. K. George, J. C. Knight, "Hybrid photonic crystal fiber," Opt. Exp. 14, 926-931 (2006).
  20. N. A. Issa, A. Argyros, M. A. van Eijkelenborg, J. Zagari, "Identifying hollow waveguide guidance in air-cored microstructured optical fibres," Opt. Exp. 11, 996-1001 (2003).
  21. E. A. J. Marcatili, R. A. Schmeltzer, "Hollow metallic and dielectric wave-guides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783-1809 (1964).
  22. M. Midrio, M. P. Singh, C. G. Someda, "The space filling mode of holey fibers: An analytical vectorial solution," J. Lightw. Technol. 18, 1031-1037 (2000).
  23. L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Exp. 13, 9014-9022 (2005).
  24. C. M. Smith, N. Venkataraman,, M. T. Gallagher, D. Müller, J. A. West, N. F. Borelli, D. C. Allan, K. W. Koch, "Lowloss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).

2008 (2)

Y. S. Shinde, H. K. Gahir, "Dynamic pressure sensing using photonic crystal fiber: Application to Tsunami sensing," IEEE Photon. Technol. Lett. 20, 279-281 (2008).

Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, X. Dong, "Environmentally stable Fabry-Pérot-type strain based on hollow-core photonic bandgap fiber," IEEE Photon. Technol. Let. 20, 237-239 (2008).

2007 (2)

F. M. Cox, A. Argyros, M. C. J. Large, S. Kalluri, "Surface enhanced Raman scattering in a hollow core microstructured optical fiber," Opt. Exp. 15, 13675-13681 (2007).

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, C. H. Brito Cruz, "Towards practical liquid and gas sensing with photonic crystal fibres: Side access to the fibre microstructure and single-mode liquid-core fibre," Meas. Sci. Technol. 18, 3075-3081 (2007).

2006 (4)

H. K. Kim, M. J. F. Digonnet, G. S. Kino, "Air-core photonic-bandgap fiber-optic gyroscope," J. Lightw. Technol. 24, 3169-3174 (2006).

A. S. Cerqueira Jr., F. Luan, C. M. B. Cordeiro, A. K. George, J. C. Knight, "Hybrid photonic crystal fiber," Opt. Exp. 14, 926-931 (2006).

W. J. Bock, J. Chen, T. Eftimov, W. Urbanczyk, "A photonic crystal fiber sensor for pressure measurements," IEEE Trans. Instrum. Meas. 55, 874-876 (2006).

Y. S. Hsu, L. Wang, W. Liu, Y. J. Chiang, "Temperature compensation of optical fiber Bragg grating pressure sensor," IEEE Photon. Technol. Let. 18, 874-876 (2006).

2005 (4)

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, H. Thienpont, "Temperature and pressure sensitivies of the highly birefringent photonic crystal fiber with core asymmetry," Appl. Phys. B 81, 325-331 (2005).

C. Martelli, J. Canning, K. Lyytikainen, N. Groothoff, "Water-core Fresnel fiber," Opt. Exp. 13, 3890-3895 (2005).

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, A. Bjarklev, "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Exp. 13, 5883-5889 (2005).

L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Exp. 13, 9014-9022 (2005).

2004 (4)

J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).

B. Culshaw, "Optical fiber sensors technologies: Opportunities and – Perhaps – Pitfalls," J. Lightw. Technol. 22, 39-50 (2004).

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, P. S. J. Russell, "All-solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004).

F. Du, Y.-Q. Lu, S.-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).

2003 (2)

N. A. Issa, A. Argyros, M. A. van Eijkelenborg, J. Zagari, "Identifying hollow waveguide guidance in air-cored microstructured optical fibres," Opt. Exp. 11, 996-1001 (2003).

C. M. Smith, N. Venkataraman,, M. T. Gallagher, D. Müller, J. A. West, N. F. Borelli, D. C. Allan, K. W. Koch, "Lowloss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).

2000 (1)

M. Midrio, M. P. Singh, C. G. Someda, "The space filling mode of holey fibers: An analytical vectorial solution," J. Lightw. Technol. 18, 1031-1037 (2000).

1993 (1)

M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, "Optical in-fibre grating high pressure sensor," Electron. Lett. 29, 398-399 (1993).

1990 (1)

W. J. Bock, "High-pressure polarimetric sensor using birefringent optical fibers," IEEE Trans. Instrum. Meas. 39, 233-237 (1990).

1964 (1)

E. A. J. Marcatili, R. A. Schmeltzer, "Hollow metallic and dielectric wave-guides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783-1809 (1964).

Appl. Phys. B (1)

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, H. Thienpont, "Temperature and pressure sensitivies of the highly birefringent photonic crystal fiber with core asymmetry," Appl. Phys. B 81, 325-331 (2005).

Appl. Phys. Lett. (1)

F. Du, Y.-Q. Lu, S.-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, R. A. Schmeltzer, "Hollow metallic and dielectric wave-guides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783-1809 (1964).

Electron. Lett. (1)

M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, "Optical in-fibre grating high pressure sensor," Electron. Lett. 29, 398-399 (1993).

IEEE Photon. Technol. Let. (1)

Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, X. Dong, "Environmentally stable Fabry-Pérot-type strain based on hollow-core photonic bandgap fiber," IEEE Photon. Technol. Let. 20, 237-239 (2008).

IEEE Trans. Instrum. Meas. (1)

W. J. Bock, "High-pressure polarimetric sensor using birefringent optical fibers," IEEE Trans. Instrum. Meas. 39, 233-237 (1990).

IEEE Photon. Technol. Let. (1)

Y. S. Hsu, L. Wang, W. Liu, Y. J. Chiang, "Temperature compensation of optical fiber Bragg grating pressure sensor," IEEE Photon. Technol. Let. 18, 874-876 (2006).

IEEE Photon. Technol. Lett. (1)

Y. S. Shinde, H. K. Gahir, "Dynamic pressure sensing using photonic crystal fiber: Application to Tsunami sensing," IEEE Photon. Technol. Lett. 20, 279-281 (2008).

IEEE Trans. Instrum. Meas. (1)

W. J. Bock, J. Chen, T. Eftimov, W. Urbanczyk, "A photonic crystal fiber sensor for pressure measurements," IEEE Trans. Instrum. Meas. 55, 874-876 (2006).

J. Lightw. Technol. (1)

M. Midrio, M. P. Singh, C. G. Someda, "The space filling mode of holey fibers: An analytical vectorial solution," J. Lightw. Technol. 18, 1031-1037 (2000).

J. Lightw. Technol. (2)

H. K. Kim, M. J. F. Digonnet, G. S. Kino, "Air-core photonic-bandgap fiber-optic gyroscope," J. Lightw. Technol. 24, 3169-3174 (2006).

B. Culshaw, "Optical fiber sensors technologies: Opportunities and – Perhaps – Pitfalls," J. Lightw. Technol. 22, 39-50 (2004).

Meas. Sci. Technol. (1)

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, C. H. Brito Cruz, "Towards practical liquid and gas sensing with photonic crystal fibres: Side access to the fibre microstructure and single-mode liquid-core fibre," Meas. Sci. Technol. 18, 3075-3081 (2007).

Meas. Sci. Technol. (1)

J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).

Nature (1)

C. M. Smith, N. Venkataraman,, M. T. Gallagher, D. Müller, J. A. West, N. F. Borelli, D. C. Allan, K. W. Koch, "Lowloss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).

Opt. Exp. (1)

N. A. Issa, A. Argyros, M. A. van Eijkelenborg, J. Zagari, "Identifying hollow waveguide guidance in air-cored microstructured optical fibres," Opt. Exp. 11, 996-1001 (2003).

Opt. Exp. (5)

A. S. Cerqueira Jr., F. Luan, C. M. B. Cordeiro, A. K. George, J. C. Knight, "Hybrid photonic crystal fiber," Opt. Exp. 14, 926-931 (2006).

L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Exp. 13, 9014-9022 (2005).

C. Martelli, J. Canning, K. Lyytikainen, N. Groothoff, "Water-core Fresnel fiber," Opt. Exp. 13, 3890-3895 (2005).

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, A. Bjarklev, "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Exp. 13, 5883-5889 (2005).

F. M. Cox, A. Argyros, M. C. J. Large, S. Kalluri, "Surface enhanced Raman scattering in a hollow core microstructured optical fiber," Opt. Exp. 15, 13675-13681 (2007).

Opt. Lett. (1)

Other (2)

G. Antonopoulos, F. Benabid, T. A. Birks, D. M. Bird, G. Bouwmans, J. C. Knight, P. S. J. Russell, "Experimental demonstration of refractive index scaling in photonic bandgap fibres," Conf. Lasers Electro-Optics 2004 (2004) Paper CThHH1.

D. A. Krohn, Fiber Optic Sensors Fundamentals and Applications (Instrument Society of America, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.