Abstract

Non-conventional core-guided transmission windows within the visible spectral range are identified in commercial hollow-core photonic crystal fibers designed to operate at 1550 nm. These windows are likely to be related to higher-order cladding photonic bandgaps and are found to be highly dependent on the cladding microstructure, thus being affected by pressure-induced stress/deformation. 20-cm-long fiber samples are then used to demonstrate simple and temperature-independent hydrostatic pressure sensing with two different setups. While in the first setup pressure is externally applied to the fiber and results in operation in the hundreds of ${\rm kgf}/{\hbox {cm}} ^{2}$ (or tens of MPa) range, the second setup applies pressure directly to fiber internal microstructure and is sensitive to pressures down to a fraction of ${\rm kgf}/{\hbox {cm}} ^{2}$ (hundredths of MPa). The fact that pressure is directly transduced into transmitted power greatly simplifies the required sensor interrogation setup.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription