Abstract

A hollow-core photonic bandgap (PBG) fiber sensing configuration for optical absorption spectroscopy of multiple-component gas samples absent of a vacuum environment is presented. Pressure-driven sensor response times that are shorter in duration compared to diffusion-limited filling times for fiber lengths ${>}1$ m are reported. Reduced filling times that approach the sub-minute regime are possible for a ${\sim} {\hbox {2}}$ meter length of commercially available PBG fiber with a 12.5 micron core diameter at a pressure ${<}15$ Psi. The spectroscopy measurements were limited to the near-IR region for sample gases that include acetylene and carbon dioxide. Using the techniques presented, the detection of concentrations ${<}100$ ppm for acetylene gas at pressures ${<}15$ Psi is possible.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. Y. L. Hoo, "Evanescent-wave gas sensor using microstructured fiber," Opt. Eng. 41, 8-9 (2002).
  2. J. B. Jensen, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004).
  3. Ł. Kornaszewski, "Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator," Opt. Exp. 15, 11219-11224 (2007).
  4. J. Pawlat, "PBG fibers for gas concentration measurement," Plasma Process Polymers 4, 743-752 (2007).
  5. J. Tuominen, "Gas filled photonic bandgap fibers as wavelength references," Opt. Commun. 255, 272-277 (2005).
  6. J. Henningsen, "Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers," Opt. Exp. 13, 10475-10482 (2005).
  7. N. Gayraud, "Midinfrared gas sensing using a photonic bandgap fiber," Appl. Opt. 47, 1269-1272 (2008).
  8. T. Ratari, "Gas sensing using ari-guiding photonic bandgap fibers," Opt. Exp. 12, 4080-4087 (2004).
  9. F. Benabid, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
  10. W. C. Swann, S. L. Gilbert, "Pressure-induce shift and broadening of 1510–1540-nm acetylene wavelength calibration lines," J. Opt. Soc. Amer. B 17, 1263-1270 (2000).
  11. L. S. Rothman, "The HITRAN 2004 molecular spectroscopic database," J. Quantum Spectrosc. Radiation Transfer 96, 139-204 (2005).
  12. S. W. Jenniss, Applications of Atomic Spectrometry to Regulatory Compliance Monitoring (Wiley, 1997) pp. 2-5.
  13. J. M. Lopez-Higuera, Handbook of Optical Fibre Sensing Technology (Wiley, 2002) pp. 249-250.
  14. F. M. Schmidt, "Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C$_{2}$H$_{2}$ in the parts per trillion range," J. Opt. Soc. Amer. B 24, (2007).
  15. R. B. Bird, Transport Phenomena (Wiley, 1960).
  16. P. K. Kundu, Mechanics of Fluids (Elsevier Academic Press, 2004).
  17. I. H. Shames, Mechanics of Fluids (McGraw Hill, 1982).
  18. B. J. Bailey, "The viscosity of carbon dioxide and acetylene at atmospheric pressure," J. Phys. D: Appl. Phys. 3, 550-562 (1970).
  19. D. Seibet, "Viscosity measurements on nitrogen," J. Chem. Eng. Data 2006 51, 526-533.
  20. R. Fox, A. McDonald, Introduction to Fluid Mechanics (Wiley, 1998).
  21. S. C. Saxena, R. S. Gambhir, "The viscosity and translational thermal conductivity of gas mixtures," Brit. J. Appl. Phys. 14, (1963).
  22. J. P. Carvalho, "Evaluation of coupling losses in hollow-core photonic crystal fibers," Proc. SPIE 6619 (2007) pp. 6619V.
  23. W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, 2003) pp. 369-372.

2008 (1)

2007 (3)

Ł. Kornaszewski, "Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator," Opt. Exp. 15, 11219-11224 (2007).

J. Pawlat, "PBG fibers for gas concentration measurement," Plasma Process Polymers 4, 743-752 (2007).

F. M. Schmidt, "Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C$_{2}$H$_{2}$ in the parts per trillion range," J. Opt. Soc. Amer. B 24, (2007).

2005 (4)

F. Benabid, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).

J. Tuominen, "Gas filled photonic bandgap fibers as wavelength references," Opt. Commun. 255, 272-277 (2005).

J. Henningsen, "Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers," Opt. Exp. 13, 10475-10482 (2005).

L. S. Rothman, "The HITRAN 2004 molecular spectroscopic database," J. Quantum Spectrosc. Radiation Transfer 96, 139-204 (2005).

2004 (2)

2002 (1)

Y. L. Hoo, "Evanescent-wave gas sensor using microstructured fiber," Opt. Eng. 41, 8-9 (2002).

2000 (1)

W. C. Swann, S. L. Gilbert, "Pressure-induce shift and broadening of 1510–1540-nm acetylene wavelength calibration lines," J. Opt. Soc. Amer. B 17, 1263-1270 (2000).

1970 (1)

B. J. Bailey, "The viscosity of carbon dioxide and acetylene at atmospheric pressure," J. Phys. D: Appl. Phys. 3, 550-562 (1970).

1963 (1)

S. C. Saxena, R. S. Gambhir, "The viscosity and translational thermal conductivity of gas mixtures," Brit. J. Appl. Phys. 14, (1963).

Appl. Opt. (1)

Brit. J. Appl. Phys. (1)

S. C. Saxena, R. S. Gambhir, "The viscosity and translational thermal conductivity of gas mixtures," Brit. J. Appl. Phys. 14, (1963).

J. Opt. Soc. Amer. B (1)

F. M. Schmidt, "Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C$_{2}$H$_{2}$ in the parts per trillion range," J. Opt. Soc. Amer. B 24, (2007).

J. Quantum Spectrosc. Radiation Transfer (1)

L. S. Rothman, "The HITRAN 2004 molecular spectroscopic database," J. Quantum Spectrosc. Radiation Transfer 96, 139-204 (2005).

J. Chem. Eng. Data 2006 (1)

D. Seibet, "Viscosity measurements on nitrogen," J. Chem. Eng. Data 2006 51, 526-533.

J. Opt. Soc. Amer. B (1)

W. C. Swann, S. L. Gilbert, "Pressure-induce shift and broadening of 1510–1540-nm acetylene wavelength calibration lines," J. Opt. Soc. Amer. B 17, 1263-1270 (2000).

J. Phys. D: Appl. Phys. (1)

B. J. Bailey, "The viscosity of carbon dioxide and acetylene at atmospheric pressure," J. Phys. D: Appl. Phys. 3, 550-562 (1970).

Nature (1)

F. Benabid, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).

Opt. Commun. (1)

J. Tuominen, "Gas filled photonic bandgap fibers as wavelength references," Opt. Commun. 255, 272-277 (2005).

Opt. Eng. (1)

Y. L. Hoo, "Evanescent-wave gas sensor using microstructured fiber," Opt. Eng. 41, 8-9 (2002).

Opt. Exp. (1)

Ł. Kornaszewski, "Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator," Opt. Exp. 15, 11219-11224 (2007).

Opt. Exp. (2)

J. Henningsen, "Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers," Opt. Exp. 13, 10475-10482 (2005).

T. Ratari, "Gas sensing using ari-guiding photonic bandgap fibers," Opt. Exp. 12, 4080-4087 (2004).

Opt. Lett. (1)

Plasma Process Polymers (1)

J. Pawlat, "PBG fibers for gas concentration measurement," Plasma Process Polymers 4, 743-752 (2007).

Other (8)

S. W. Jenniss, Applications of Atomic Spectrometry to Regulatory Compliance Monitoring (Wiley, 1997) pp. 2-5.

J. M. Lopez-Higuera, Handbook of Optical Fibre Sensing Technology (Wiley, 2002) pp. 249-250.

R. B. Bird, Transport Phenomena (Wiley, 1960).

P. K. Kundu, Mechanics of Fluids (Elsevier Academic Press, 2004).

I. H. Shames, Mechanics of Fluids (McGraw Hill, 1982).

R. Fox, A. McDonald, Introduction to Fluid Mechanics (Wiley, 1998).

J. P. Carvalho, "Evaluation of coupling losses in hollow-core photonic crystal fibers," Proc. SPIE 6619 (2007) pp. 6619V.

W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, 2003) pp. 369-372.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.