Abstract

Low $V_{\pi}$ electro–optic (EO) polymer modulators were environmental stress tested at both the chip and packaged device level. Different top clad materials showed different results for high-temperature and temperature cycle testing, which is related mostly to coefficient of thermal expansion (CTE) mismatches and/or adhesion properties of the clads related to other materials in the devices stack and to the substrate and electrode materials. With thoroughly compatible cladding, devices that are thermally stable for over 5000 h at 85 $^{\circ}$C have been achieved. High optical power (500 mW @ 1550 nm) tests showed the photochemical stability of the EO polymer material in hermetically sealed packages. The results demonstrate that clad polymers and interactions between devices layers are of concern for achieving environmentally stable EO polymers modulators.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. H. Ma, A. K.-Y. Jen, L. R. Dalton, "Polymer-based optical waveguides: Materials, processing, and devices," Adv. Mater. 14, 1339-1365 (2002).
  2. M. Lee, O. Mitrofanov, H. E. Katz, C. Erben, "Millimeter-wave dielectric properties of electro-optic polymer materials," Appl. Phys. Lett. 81, 1474-1476 (2002).
  3. Y. Enami, C. T. DeRose, D. Mathine, C. Loychick, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nature Photon 1, 180-185 (2007).
  4. A. H. Udupa, H. Erlig, Y. Chang, D. Chang, H. R. Fetterman, H. Zhang, S.-S. Lee, F. Wang, W. H. Steier, L. R. Dalton, "High-frequency, low-crosstalk modulator arrays based on FTC polymer systems," Electron. Lett. 35, 1702-1704 (1999).
  5. E. W. Taylor, J. E. Nichter, F. D. Nash, F. Haas, A. A. Szep, R. J. Michalak, B. M. Flusche, P. R. Cook, T. A. McEwen, B. F. McKeon, P. M. Payson, G. A. Brost, A. Pirich, C. Castenada, B. Tsap, H. R. Fetterman, "Radiation resistance of electro-optic polymer-based modulators," Appl. Phys. Lett. 86, 201122-1-201122-3 (2005).
  6. C. H. Cox, IIIE. I. Ackerman, "High electro-optic sensitivity (r33) polymers: They are not just for low voltage modulators anymore," J. Phys. Chem. B 108, 8540-8542 (2004).
  7. J. T. Ahn, S. Park, J. Y. Do, J.-M. Lee, M.-H. Lee, K. H. Kim, "Polymer wavelength channel selector composed of electrooptic polymer switch array and the two polymer arrayed waveguide gratings," IEEE Photon. Technol. Lett. 16, 1567-1569 (2004).
  8. D. H. Chang, T. Azfar, S.-K. Kim, H. R. Fetterman, C. Zhang, W. H. Steier, "Vertical adiabatic transition between a silica planar waveguide and an electro-optic polymer fabricated with gray-scale lithography," Opt. Lett. 28, 869-871 (2003).
  9. P. Rabiei, W. H. Steier, C. Zhang, L. R. Dalton, "Polymer micro-ring filters and modulators," J. Lightw. Technol. 20, 1968-1975 (2002).
  10. H.-C. Song, M.-C. Oh, S.-W. Ahn, W. H. Steier, H. R. Fetterman, C. Zhang, "Flexible low-voltage electro-optic polymer modulators," Appl. Phys. Lett. 82, 4432-4434 (2003).
  11. D. M. Burland, R. D. Miller, C. A. Walsh, "Second-order nonliearity in poled-polymer systems," Chem. Rev. 94, 31-75 (1994).
  12. M. A. Mortavazi, H. N. Yoon, C. C. Teng, "Optical power handling properties of polymer nonlinear optical waveguides," J. Appl. Phys. 74, 4871-4876 (1993).
  13. H. C. Ling, W. R. Holland, H. M. Gordon, "DC electrical behavior of polymers used in electro-optic devices," J. Appl. Phys. 70, 6669-6673 (1991).
  14. S.-K. Kim, H. Zhang, D. H. Chang, C. Zhang, C. Wang, W. H. Steier, H. R. Fetterman, "Electro-optic polymer modulators with an inverted-rib waveguide structure," IEEE Photon. Technol. Lett. 15, 218-220 (2003).
  15. C. Y. S. Fu, H. S. Lackritz, D. B. Priddy, Jr.J. E. McGrath, "Effects of chromophore functionalization and physical aging during poling on chromophore orientational dynamics in poly(aryl ether)s for second order nonlinear optics," Macromolecules 29, 3470-3474 (1996).
  16. C. A. Walsh, D. M. Burland, V. Y. Lee, R. D. Miller, B. A. Smith, R. J. Twieg, W. Volksen, "Orientational relaxation in electric field poled guest-host and side-chain polymers below $T_{g}$," Macromolecules 26, 3720-3722 (1993).
  17. S. S. H. Mao, Y. Ra, L. Guo, C. Zhang, L. R. Dalton, A. Chen, S. Garner, W. H. Steier, "Progress toward device-quality second order nonlinear optical materials. 1. Influence on composition and processing conditions on nonlinearity, temporal stability, and optical loss," Chem. Mater. 10, 146-155 (1998).
  18. Y. Shi, W. Wang, D. J. Olson, W. Lin, J. H. Bechtel, "Packaging and testing high-speed electrooptic polymer modulators," Proc. SPIE Conf. Optoelecton. Interconn. VI (1999) pp. 144-153.
  19. S. Ermer, S. M. Lovejoy, P. V. Bedworth, D. S. Leung, H. B. Warren, J. A. Epstein, D. G. Girton, L. S. Dries, R. E. Taylor, R. R. Barto, Jr.W. Eades, T. E. Van Eck, A. S. Moss, W. W. Anderson, "Low-voltage electro-optic modulation using amorphous polycarbonate host material," Adv. Funct. Mater. 12, 605-610 (2002).
  20. M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chap, A. Szep, W. H. Steier, H. R. Fetterman, L. R. Dalton, "Recent advances in electro-optic polymer modulators incorporating highly nonlinear chromophore," IEEE J. Sel. Top. Quant. Electron. 7, 826-835 (2001).
  21. K. Song, M. Mortazavi, H. Yoon, Polymers for Second Order Nonlinear Optics (American Chemical Society, 1995) pp. 333-345.

2007 (1)

Y. Enami, C. T. DeRose, D. Mathine, C. Loychick, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nature Photon 1, 180-185 (2007).

2005 (1)

E. W. Taylor, J. E. Nichter, F. D. Nash, F. Haas, A. A. Szep, R. J. Michalak, B. M. Flusche, P. R. Cook, T. A. McEwen, B. F. McKeon, P. M. Payson, G. A. Brost, A. Pirich, C. Castenada, B. Tsap, H. R. Fetterman, "Radiation resistance of electro-optic polymer-based modulators," Appl. Phys. Lett. 86, 201122-1-201122-3 (2005).

2004 (2)

C. H. Cox, IIIE. I. Ackerman, "High electro-optic sensitivity (r33) polymers: They are not just for low voltage modulators anymore," J. Phys. Chem. B 108, 8540-8542 (2004).

J. T. Ahn, S. Park, J. Y. Do, J.-M. Lee, M.-H. Lee, K. H. Kim, "Polymer wavelength channel selector composed of electrooptic polymer switch array and the two polymer arrayed waveguide gratings," IEEE Photon. Technol. Lett. 16, 1567-1569 (2004).

2003 (3)

H.-C. Song, M.-C. Oh, S.-W. Ahn, W. H. Steier, H. R. Fetterman, C. Zhang, "Flexible low-voltage electro-optic polymer modulators," Appl. Phys. Lett. 82, 4432-4434 (2003).

S.-K. Kim, H. Zhang, D. H. Chang, C. Zhang, C. Wang, W. H. Steier, H. R. Fetterman, "Electro-optic polymer modulators with an inverted-rib waveguide structure," IEEE Photon. Technol. Lett. 15, 218-220 (2003).

D. H. Chang, T. Azfar, S.-K. Kim, H. R. Fetterman, C. Zhang, W. H. Steier, "Vertical adiabatic transition between a silica planar waveguide and an electro-optic polymer fabricated with gray-scale lithography," Opt. Lett. 28, 869-871 (2003).

2002 (4)

S. Ermer, S. M. Lovejoy, P. V. Bedworth, D. S. Leung, H. B. Warren, J. A. Epstein, D. G. Girton, L. S. Dries, R. E. Taylor, R. R. Barto, Jr.W. Eades, T. E. Van Eck, A. S. Moss, W. W. Anderson, "Low-voltage electro-optic modulation using amorphous polycarbonate host material," Adv. Funct. Mater. 12, 605-610 (2002).

P. Rabiei, W. H. Steier, C. Zhang, L. R. Dalton, "Polymer micro-ring filters and modulators," J. Lightw. Technol. 20, 1968-1975 (2002).

H. Ma, A. K.-Y. Jen, L. R. Dalton, "Polymer-based optical waveguides: Materials, processing, and devices," Adv. Mater. 14, 1339-1365 (2002).

M. Lee, O. Mitrofanov, H. E. Katz, C. Erben, "Millimeter-wave dielectric properties of electro-optic polymer materials," Appl. Phys. Lett. 81, 1474-1476 (2002).

2001 (1)

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chap, A. Szep, W. H. Steier, H. R. Fetterman, L. R. Dalton, "Recent advances in electro-optic polymer modulators incorporating highly nonlinear chromophore," IEEE J. Sel. Top. Quant. Electron. 7, 826-835 (2001).

1999 (1)

A. H. Udupa, H. Erlig, Y. Chang, D. Chang, H. R. Fetterman, H. Zhang, S.-S. Lee, F. Wang, W. H. Steier, L. R. Dalton, "High-frequency, low-crosstalk modulator arrays based on FTC polymer systems," Electron. Lett. 35, 1702-1704 (1999).

1998 (1)

S. S. H. Mao, Y. Ra, L. Guo, C. Zhang, L. R. Dalton, A. Chen, S. Garner, W. H. Steier, "Progress toward device-quality second order nonlinear optical materials. 1. Influence on composition and processing conditions on nonlinearity, temporal stability, and optical loss," Chem. Mater. 10, 146-155 (1998).

1996 (1)

C. Y. S. Fu, H. S. Lackritz, D. B. Priddy, Jr.J. E. McGrath, "Effects of chromophore functionalization and physical aging during poling on chromophore orientational dynamics in poly(aryl ether)s for second order nonlinear optics," Macromolecules 29, 3470-3474 (1996).

1994 (1)

D. M. Burland, R. D. Miller, C. A. Walsh, "Second-order nonliearity in poled-polymer systems," Chem. Rev. 94, 31-75 (1994).

1993 (2)

M. A. Mortavazi, H. N. Yoon, C. C. Teng, "Optical power handling properties of polymer nonlinear optical waveguides," J. Appl. Phys. 74, 4871-4876 (1993).

C. A. Walsh, D. M. Burland, V. Y. Lee, R. D. Miller, B. A. Smith, R. J. Twieg, W. Volksen, "Orientational relaxation in electric field poled guest-host and side-chain polymers below $T_{g}$," Macromolecules 26, 3720-3722 (1993).

1991 (1)

H. C. Ling, W. R. Holland, H. M. Gordon, "DC electrical behavior of polymers used in electro-optic devices," J. Appl. Phys. 70, 6669-6673 (1991).

Adv. Funct. Mater. (1)

S. Ermer, S. M. Lovejoy, P. V. Bedworth, D. S. Leung, H. B. Warren, J. A. Epstein, D. G. Girton, L. S. Dries, R. E. Taylor, R. R. Barto, Jr.W. Eades, T. E. Van Eck, A. S. Moss, W. W. Anderson, "Low-voltage electro-optic modulation using amorphous polycarbonate host material," Adv. Funct. Mater. 12, 605-610 (2002).

Adv. Mater. (1)

H. Ma, A. K.-Y. Jen, L. R. Dalton, "Polymer-based optical waveguides: Materials, processing, and devices," Adv. Mater. 14, 1339-1365 (2002).

Appl. Phys. Lett. (1)

M. Lee, O. Mitrofanov, H. E. Katz, C. Erben, "Millimeter-wave dielectric properties of electro-optic polymer materials," Appl. Phys. Lett. 81, 1474-1476 (2002).

Appl. Phys. Lett. (2)

E. W. Taylor, J. E. Nichter, F. D. Nash, F. Haas, A. A. Szep, R. J. Michalak, B. M. Flusche, P. R. Cook, T. A. McEwen, B. F. McKeon, P. M. Payson, G. A. Brost, A. Pirich, C. Castenada, B. Tsap, H. R. Fetterman, "Radiation resistance of electro-optic polymer-based modulators," Appl. Phys. Lett. 86, 201122-1-201122-3 (2005).

H.-C. Song, M.-C. Oh, S.-W. Ahn, W. H. Steier, H. R. Fetterman, C. Zhang, "Flexible low-voltage electro-optic polymer modulators," Appl. Phys. Lett. 82, 4432-4434 (2003).

Chem. Mater. (1)

S. S. H. Mao, Y. Ra, L. Guo, C. Zhang, L. R. Dalton, A. Chen, S. Garner, W. H. Steier, "Progress toward device-quality second order nonlinear optical materials. 1. Influence on composition and processing conditions on nonlinearity, temporal stability, and optical loss," Chem. Mater. 10, 146-155 (1998).

Chem. Rev. (1)

D. M. Burland, R. D. Miller, C. A. Walsh, "Second-order nonliearity in poled-polymer systems," Chem. Rev. 94, 31-75 (1994).

Electron. Lett. (1)

A. H. Udupa, H. Erlig, Y. Chang, D. Chang, H. R. Fetterman, H. Zhang, S.-S. Lee, F. Wang, W. H. Steier, L. R. Dalton, "High-frequency, low-crosstalk modulator arrays based on FTC polymer systems," Electron. Lett. 35, 1702-1704 (1999).

IEEE J. Sel. Top. Quant. Electron. (1)

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chap, A. Szep, W. H. Steier, H. R. Fetterman, L. R. Dalton, "Recent advances in electro-optic polymer modulators incorporating highly nonlinear chromophore," IEEE J. Sel. Top. Quant. Electron. 7, 826-835 (2001).

IEEE Photon. Technol. Lett. (2)

J. T. Ahn, S. Park, J. Y. Do, J.-M. Lee, M.-H. Lee, K. H. Kim, "Polymer wavelength channel selector composed of electrooptic polymer switch array and the two polymer arrayed waveguide gratings," IEEE Photon. Technol. Lett. 16, 1567-1569 (2004).

S.-K. Kim, H. Zhang, D. H. Chang, C. Zhang, C. Wang, W. H. Steier, H. R. Fetterman, "Electro-optic polymer modulators with an inverted-rib waveguide structure," IEEE Photon. Technol. Lett. 15, 218-220 (2003).

J. Appl. Phys. (1)

M. A. Mortavazi, H. N. Yoon, C. C. Teng, "Optical power handling properties of polymer nonlinear optical waveguides," J. Appl. Phys. 74, 4871-4876 (1993).

J. Appl. Phys. (1)

H. C. Ling, W. R. Holland, H. M. Gordon, "DC electrical behavior of polymers used in electro-optic devices," J. Appl. Phys. 70, 6669-6673 (1991).

J. Lightw. Technol. (1)

P. Rabiei, W. H. Steier, C. Zhang, L. R. Dalton, "Polymer micro-ring filters and modulators," J. Lightw. Technol. 20, 1968-1975 (2002).

J. Phys. Chem. B (1)

C. H. Cox, IIIE. I. Ackerman, "High electro-optic sensitivity (r33) polymers: They are not just for low voltage modulators anymore," J. Phys. Chem. B 108, 8540-8542 (2004).

Macromolecules (2)

C. Y. S. Fu, H. S. Lackritz, D. B. Priddy, Jr.J. E. McGrath, "Effects of chromophore functionalization and physical aging during poling on chromophore orientational dynamics in poly(aryl ether)s for second order nonlinear optics," Macromolecules 29, 3470-3474 (1996).

C. A. Walsh, D. M. Burland, V. Y. Lee, R. D. Miller, B. A. Smith, R. J. Twieg, W. Volksen, "Orientational relaxation in electric field poled guest-host and side-chain polymers below $T_{g}$," Macromolecules 26, 3720-3722 (1993).

Nature Photon (1)

Y. Enami, C. T. DeRose, D. Mathine, C. Loychick, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nature Photon 1, 180-185 (2007).

Opt. Lett. (1)

Other (2)

Y. Shi, W. Wang, D. J. Olson, W. Lin, J. H. Bechtel, "Packaging and testing high-speed electrooptic polymer modulators," Proc. SPIE Conf. Optoelecton. Interconn. VI (1999) pp. 144-153.

K. Song, M. Mortazavi, H. Yoon, Polymers for Second Order Nonlinear Optics (American Chemical Society, 1995) pp. 333-345.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.