Abstract

An investigation of temperature-induced instabilities in a wavelength measurement system based on macro-bend fiber filter used in the ratiometric scheme are presented. Two wavelength measurement systems based on macro-bend fiber, a standard low bend loss single-mode fiber filter based system and a high bend loss fiber filter based system are considered. In the case of a low bend loss fiber filter based system, the oscillatory variation in the ratio response with temperature and the difference in the temperature-induced ratio variation at different wavelengths makes the temperature corrected calibration of the system unfeasible, which is essential for precise wavelength measurements. The high bend loss fiber filter based system is more sensitive to temperature than the low bend loss fiber filter based system, but critically for the high bend loss fiber filter based system the ratio has a linear variation with temperature, which can be corrected by a suitable temperature calibration process. Comprehensive studies on the temperature dependence of both the macro-bend fiber filter system and its effect on wavelength measurements are presented in this paper.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. Q. Wang, G. Farrell, T. Freir, G. Rajan, P. Wang, "Low-cost wavelength measurement based on a macrobending single-mode fiber," Opt. Lett. 31, 1785-1787 (2006).
  2. Q. Wang, G. Rajan, P. Wang, G. Farrell, "Macrobending fiber loss filter, ratiometric wavelength measurement and application," Meas. Sci. Technol. 18, 3082-3088 (2007).
  3. R. Morgan, J. S. Barton, P. G. Harper, J. D. C. Jones, "Wavelength dependence of bending loss in monomode optical fibers: Effect of buffer coating," Opt. Lett. 15, 947-949 (1990).
  4. F. M. Haran, J. S. Barton, S. R. Kidd, J. D. C. Jones, "Optical fiber interferometric sensors using buffer guided light," Meas. Sci. Technol. 5, 526-530 (1994).
  5. R. Morgan, J. S. Barton, P. G. Harper, J. D. C. Jones, "Temperature dependence of bending loss in monomode optical fibers," Electron. Lett. 26, 937-939 (1990).
  6. S. H. Nam, S. Yin, "High temperature sensing using whispering gallery mode resonance in bent optical fibers," IEEE Photon. Technol. Lett. 17, 2391-2393 (2005).
  7. P. Wang, G. Farrell, Q. Wang, G. Rajan, "An optimized edge filter for wavelength measurements," IEEE Photon. Technol. Lett. 19, 1136-1138 (2007).
  8. Q. Wang, G. Farrell, T. Freir, "Theoretical and experimental investigations of macro-bend losses for standard single mode fibers," Opt. Expr. 13, 4476-4484 (2005).
  9. Q. Wang, G. Rajan, P. Wang, G. Farrell, "Polarization dependence of bend loss for a standard singlemode fiber," Opt. Expr. 15, 4909-4920 (2007).
  10. D. Marcuse, "Curvature loss formula for optical fibers," J. Opt. Soc. Amer. 66, 216-220 (1976).
  11. Y. Zhao, Y. Liao, "Discrimination methods and demodulation techniques for fiber Bragg grating sensors," Opt. Lasers Eng. 41, 1-18 (2004).
  12. S. M. Melle, K. Liu, R. M. Measures, "A passive wavelength demodulation system for guided Bragg grating sensors," IEEE Photon. Technol. Lett. 4, 516-518 (1992).
  13. J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, H. D. Miller, "Measuring absorption coefficients in small volumes of highly scattering media: source-detector separations for which path lengths do not depend on scattering properties," Appl. Opt. 36, 5655-5661 (1997).
  14. Q. Wang, G. Farrell, T. Freir, "Study of transmission response of edge filters employed in wavelength measurements," Appl. Opt. 44, 7789-7792 (2005).

2007 (3)

P. Wang, G. Farrell, Q. Wang, G. Rajan, "An optimized edge filter for wavelength measurements," IEEE Photon. Technol. Lett. 19, 1136-1138 (2007).

Q. Wang, G. Rajan, P. Wang, G. Farrell, "Polarization dependence of bend loss for a standard singlemode fiber," Opt. Expr. 15, 4909-4920 (2007).

Q. Wang, G. Rajan, P. Wang, G. Farrell, "Macrobending fiber loss filter, ratiometric wavelength measurement and application," Meas. Sci. Technol. 18, 3082-3088 (2007).

2006 (1)

2005 (3)

Q. Wang, G. Farrell, T. Freir, "Study of transmission response of edge filters employed in wavelength measurements," Appl. Opt. 44, 7789-7792 (2005).

S. H. Nam, S. Yin, "High temperature sensing using whispering gallery mode resonance in bent optical fibers," IEEE Photon. Technol. Lett. 17, 2391-2393 (2005).

Q. Wang, G. Farrell, T. Freir, "Theoretical and experimental investigations of macro-bend losses for standard single mode fibers," Opt. Expr. 13, 4476-4484 (2005).

2004 (1)

Y. Zhao, Y. Liao, "Discrimination methods and demodulation techniques for fiber Bragg grating sensors," Opt. Lasers Eng. 41, 1-18 (2004).

1997 (1)

1994 (1)

F. M. Haran, J. S. Barton, S. R. Kidd, J. D. C. Jones, "Optical fiber interferometric sensors using buffer guided light," Meas. Sci. Technol. 5, 526-530 (1994).

1992 (1)

S. M. Melle, K. Liu, R. M. Measures, "A passive wavelength demodulation system for guided Bragg grating sensors," IEEE Photon. Technol. Lett. 4, 516-518 (1992).

1990 (2)

R. Morgan, J. S. Barton, P. G. Harper, J. D. C. Jones, "Temperature dependence of bending loss in monomode optical fibers," Electron. Lett. 26, 937-939 (1990).

R. Morgan, J. S. Barton, P. G. Harper, J. D. C. Jones, "Wavelength dependence of bending loss in monomode optical fibers: Effect of buffer coating," Opt. Lett. 15, 947-949 (1990).

1976 (1)

D. Marcuse, "Curvature loss formula for optical fibers," J. Opt. Soc. Amer. 66, 216-220 (1976).

Appl. Opt. (1)

Q. Wang, G. Farrell, T. Freir, "Study of transmission response of edge filters employed in wavelength measurements," Appl. Opt. 44, 7789-7792 (2005).

Appl. Opt. (1)

Electron. Lett. (1)

R. Morgan, J. S. Barton, P. G. Harper, J. D. C. Jones, "Temperature dependence of bending loss in monomode optical fibers," Electron. Lett. 26, 937-939 (1990).

IEEE Photon. Technol. Lett. (1)

S. H. Nam, S. Yin, "High temperature sensing using whispering gallery mode resonance in bent optical fibers," IEEE Photon. Technol. Lett. 17, 2391-2393 (2005).

IEEE Photon. Technol. Lett. (1)

S. M. Melle, K. Liu, R. M. Measures, "A passive wavelength demodulation system for guided Bragg grating sensors," IEEE Photon. Technol. Lett. 4, 516-518 (1992).

IEEE Photon. Technol. Lett. (1)

P. Wang, G. Farrell, Q. Wang, G. Rajan, "An optimized edge filter for wavelength measurements," IEEE Photon. Technol. Lett. 19, 1136-1138 (2007).

J. Opt. Soc. Amer. (1)

D. Marcuse, "Curvature loss formula for optical fibers," J. Opt. Soc. Amer. 66, 216-220 (1976).

Meas. Sci. Technol. (1)

F. M. Haran, J. S. Barton, S. R. Kidd, J. D. C. Jones, "Optical fiber interferometric sensors using buffer guided light," Meas. Sci. Technol. 5, 526-530 (1994).

Meas. Sci. Technol. (1)

Q. Wang, G. Rajan, P. Wang, G. Farrell, "Macrobending fiber loss filter, ratiometric wavelength measurement and application," Meas. Sci. Technol. 18, 3082-3088 (2007).

Opt. Expr. (1)

Q. Wang, G. Farrell, T. Freir, "Theoretical and experimental investigations of macro-bend losses for standard single mode fibers," Opt. Expr. 13, 4476-4484 (2005).

Opt. Lasers Eng. (1)

Y. Zhao, Y. Liao, "Discrimination methods and demodulation techniques for fiber Bragg grating sensors," Opt. Lasers Eng. 41, 1-18 (2004).

Opt. Expr. (1)

Q. Wang, G. Rajan, P. Wang, G. Farrell, "Polarization dependence of bend loss for a standard singlemode fiber," Opt. Expr. 15, 4909-4920 (2007).

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.