A. Reklatis, L. Reggiani, "Monte Carlo calculation of
electron initiated impact ionization in bulk Zinc-Blende and Wurtzite GaN," J. Appl. Phys. 95, 7925 (2004).

A. H. You, D. S. Ong, "Avalanche multiplication and
noise characteristics of thin InP p-i-n diodes," Jpn.
J. Appl. Phys. 43, 7399 (2004).

G. S. Kinsey, J. C. Campbell, A. G. Dentai, "Waveguide avalanche photodiode
operating at 1.55 $\mu\hbox{m}$ with
a gain-bandwidth product of 320 GHz," IEEE Photon.
Technol. Lett. 13, 842 (2001).

G. S. Kinsey, C. C. Hansing, A. L. Holmes, B. G. Streetman, Jr.J. C. Campbell, A. G. Dentai, "Waveguide In0.53Ga0.47As-In0.52Al0.48As
avalanche photodiode," IEEE Photon. Technol.
Lett. 12, 416 (2000).

D. S. Ong, K. F. Li, S. A. Plimmer, G. J. Rees, J. P. R. David, P. N. Robson, "Full band Monte Carlo modeling of impact
ionization, avalanche multiplication, and noise in submicron GaAs p+-i-n+
diodes," J. Appl. Phys. 87, 7885 (2000).

P. Yuan, C. C. Hansing, K. A. Anselm, C. V. Lenox, H. Nie, A. L. Holmes, B. G. Streetman, J. C. Campbell, "Impact ionization characteristics of III–V
semiconductors for a wide range of multiplication region thickness," IEEE J. Quantum Electron. 36, 198 (2000).

K. F. Li, S. A. Plimmer, J. P. R. David, G. J. Rees, P. N. Robson, C. C. Button, J. C. Clark, "Low avalanche noise characteristics
in thin InP p+-i-n + diodes with electron initiated multiplication," IEEE Photon. Technol. Lett. 11, 364 (1999).

R. J. McIntyre, "A new look at impact ionization—Part
I: A theory of gain, nosie breakdown probability and frequency response," IEEE Trans. Electron Devices 46, 1623 (1999).

C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Holmes, B. G. Streetman, Jr.J. C. Campbell, "Resonant-cavity InGaAs-InAlAs
avalanche photodiodes with gain-bandwidth product of 290 GHz," IEEE Photon. Technol. Lett. 11, 1162 (1999).

D. S. Ong, K. F. Li, G. J. Rees, G. M. Dunn, J. P. R. David, P. N. Robson, "A simple model to determine multiplication
and noise in avalanche photodiodes," J. Appl.
Phys. 83, 3426 (1998).

G. M. Dunn, G. J. Rees, J. P. R. David, "Monte Carlo simulation of impact
ionization and current multiplication in short GaAs pin diodes," Semicond. Sci. Techonol. 12, 692 (1997).

A. Spinelli, A. L. Lacaita, "Mean gain of avalanche photodiodes
in a dead space model," IEEE Trans. Electron
Devices 43, 23 (1996).

M. M. Hayat, B. E. A. Saleh, M. C. Teich, "Effect of dead space on gain
and noise of double-carrier-multiplication avalanche photodiodes," IEEE Trans. Electron Devices 39, 546 (1992).

F. Osaka, T. Mikawa, O. Wada, "Analysis of impact ionization phenomena
in InP by Monte Carlo simulation," Jpn. J. Appl.
Phys. 25, 394 (1986).

C. A. Armiento, S. H. Groves, "Impact ionization in (100)-,
(110)-, and (111)- oriented InP avalanche photodiodes," Appl.
Phys. Lett. 43, 198 (1983).

S. Koyama, T. Furuyama, S. Mimura, H. Iizuka, "Non-thermal carrier generation
in MOS structures," Jpn. J. Appl. Phys. 19, 85 (1980).

C. W. Kao, C. R. Crowell, "Impact ionization by electrons
and hole in InP," Solid State Electron. 23, 881 (1980).

R. J. McIntyre, "The distribution of gains in
uniformly multiplying avalanche photodiodes: Theory," IEEE
Trans. Electron Devices 19, 703 (1972).

W. P. Dumke, "Theory of avalanche breakdown
in InSb and InAs," Phys. Rev. 167, 783 (1968).

R. J. McIntyre, "Multiplication noise in uniform
avalanche diodes," IEEE Trans. Electron Devices 13, 164 (1966).

L. V. Keldysh, "Concerning the theory of impact
ionization in a semiconductor," Sov. Phys. 21, 1135 (1965).

G. A. Baraff, "Distribution functions and
ionization rates for hot electrons in semiconductors," Phys.
Rev. 128, 2507 (1962).

P. A. Wolf, "Theory of electron multiplication
in silicon and germanium," Phys. Rev. 95, 1415 (1954).

C. A. Armiento, S. H. Groves, "Impact ionization in (100)-,
(110)-, and (111)- oriented InP avalanche photodiodes," Appl.
Phys. Lett. 43, 198 (1983).

R. J. McIntyre, "The distribution of gains in
uniformly multiplying avalanche photodiodes: Theory," IEEE
Trans. Electron Devices 19, 703 (1972).

P. Yuan, C. C. Hansing, K. A. Anselm, C. V. Lenox, H. Nie, A. L. Holmes, B. G. Streetman, J. C. Campbell, "Impact ionization characteristics of III–V
semiconductors for a wide range of multiplication region thickness," IEEE J. Quantum Electron. 36, 198 (2000).

G. S. Kinsey, J. C. Campbell, A. G. Dentai, "Waveguide avalanche photodiode
operating at 1.55 $\mu\hbox{m}$ with
a gain-bandwidth product of 320 GHz," IEEE Photon.
Technol. Lett. 13, 842 (2001).

G. S. Kinsey, C. C. Hansing, A. L. Holmes, B. G. Streetman, Jr.J. C. Campbell, A. G. Dentai, "Waveguide In0.53Ga0.47As-In0.52Al0.48As
avalanche photodiode," IEEE Photon. Technol.
Lett. 12, 416 (2000).

C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Holmes, B. G. Streetman, Jr.J. C. Campbell, "Resonant-cavity InGaAs-InAlAs
avalanche photodiodes with gain-bandwidth product of 290 GHz," IEEE Photon. Technol. Lett. 11, 1162 (1999).

K. F. Li, S. A. Plimmer, J. P. R. David, G. J. Rees, P. N. Robson, C. C. Button, J. C. Clark, "Low avalanche noise characteristics
in thin InP p+-i-n + diodes with electron initiated multiplication," IEEE Photon. Technol. Lett. 11, 364 (1999).

A. Spinelli, A. L. Lacaita, "Mean gain of avalanche photodiodes
in a dead space model," IEEE Trans. Electron
Devices 43, 23 (1996).

R. J. McIntyre, "Multiplication noise in uniform
avalanche diodes," IEEE Trans. Electron Devices 13, 164 (1966).

M. M. Hayat, B. E. A. Saleh, M. C. Teich, "Effect of dead space on gain
and noise of double-carrier-multiplication avalanche photodiodes," IEEE Trans. Electron Devices 39, 546 (1992).

R. J. McIntyre, "A new look at impact ionization—Part
I: A theory of gain, nosie breakdown probability and frequency response," IEEE Trans. Electron Devices 46, 1623 (1999).

D. S. Ong, K. F. Li, G. J. Rees, G. M. Dunn, J. P. R. David, P. N. Robson, "A simple model to determine multiplication
and noise in avalanche photodiodes," J. Appl.
Phys. 83, 3426 (1998).

D. S. Ong, K. F. Li, S. A. Plimmer, G. J. Rees, J. P. R. David, P. N. Robson, "Full band Monte Carlo modeling of impact
ionization, avalanche multiplication, and noise in submicron GaAs p+-i-n+
diodes," J. Appl. Phys. 87, 7885 (2000).

A. Reklatis, L. Reggiani, "Monte Carlo calculation of
electron initiated impact ionization in bulk Zinc-Blende and Wurtzite GaN," J. Appl. Phys. 95, 7925 (2004).

A. H. You, D. S. Ong, "Avalanche multiplication and
noise characteristics of thin InP p-i-n diodes," Jpn.
J. Appl. Phys. 43, 7399 (2004).

F. Osaka, T. Mikawa, O. Wada, "Analysis of impact ionization phenomena
in InP by Monte Carlo simulation," Jpn. J. Appl.
Phys. 25, 394 (1986).

S. Koyama, T. Furuyama, S. Mimura, H. Iizuka, "Non-thermal carrier generation
in MOS structures," Jpn. J. Appl. Phys. 19, 85 (1980).

G. A. Baraff, "Distribution functions and
ionization rates for hot electrons in semiconductors," Phys.
Rev. 128, 2507 (1962).

W. P. Dumke, "Theory of avalanche breakdown
in InSb and InAs," Phys. Rev. 167, 783 (1968).

P. A. Wolf, "Theory of electron multiplication
in silicon and germanium," Phys. Rev. 95, 1415 (1954).

G. M. Dunn, G. J. Rees, J. P. R. David, "Monte Carlo simulation of impact
ionization and current multiplication in short GaAs pin diodes," Semicond. Sci. Techonol. 12, 692 (1997).

C. W. Kao, C. R. Crowell, "Impact ionization by electrons
and hole in InP," Solid State Electron. 23, 881 (1980).

L. V. Keldysh, "Concerning the theory of impact
ionization in a semiconductor," Sov. Phys. 21, 1135 (1965).

A. H. You, D. S. Ong, "Monte Carlo modeling of high
field carrier transport in bulk InP," ICSE 2000
Proc. (2000).