Abstract

Power-coupling models are inherently unable to describe certain mode coupling effects in multimode fiber (MMF) when using coherent sources at high bit rates, such as polarization dependence of the impulse response. We develop a field-coupling model for propagation in graded-index MMF, analogous to the principal-states model for polarization-mode dispersion in single-mode fiber. Our model allows computation of the fiber impulse response, given a launched electric-field profile and polarization. In order to model both spatial- and polarization-mode coupling, we divide a MMF into numerous short sections, each having random curvature and random angular orientation. The model can be described using only a few parameters, including fiber length, number of sections, and curvature variance. For each random realization of a MMF, we compute a propagation matrix, the principal modes (PMs), and corresponding group delays (GDs). When the curvature variance and fiber length are small (low-coupling regime), the GDs are close to their uncoupled values, and scale linearly with fiber length, while the PMs remain highly polarized. In this regime, our model reproduces the polarization dependence of the impulse response that is observed in silica MMF. When the curvature variance and fiber length are sufficiently large (high-coupling regime), the GD spread is reduced, and the GDs scale with the square root of the fiber length, while the PMs become depolarized. In this regime, our model is consistent with the reduced GD spread observed in plastic MMF.

© 2009 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. R. Olshansky, "Mode coupling effects in graded-index optical fibers," Appl. Opt. 14, 935-945 (1975).
  2. K.-I. Kitayama, S. Sikai, N. Uchida, "Impulse response prediction based on experimental Mode coupling coefficient in a 10-km long graded-index fiber," IEEE J. Quantum Electron. QE-16, 356-362 (1980).
  3. D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1780 (1972).
  4. A. F. Garito, J. Wang, R. Gao, "Effects of random perturbations in plastic optical fibers," Science 281, 962-967 (1998).
  5. D. Marcuse, "Losses and impulse response of a parabolic index fiber with random bends," Bell Syst. Tech. J. 52, 1423-1437 (1973).
  6. C. D. Poole, "Statistical treatment of polarization dispersion in single-mode fiber," Opt. Lett. 13, 687-689 (1988).
  7. C. D. Poole, R. E. Wagner, "Phenomenological approach to polarization dispersion in long single-mode fibers," Electron. Lett. 22, 1029-1030 (1986).
  8. D. A. Nolan, M. J. Li, "Fiber spin-profile designs for producing fibers with low polarization mode dispersion," Opt. Lett. 23, 1659-1661 (1998).
  9. D. A. Nolan, X. Chen, M. J. Li, "Fibers with low polarization-mode dispersion," J. Lightw. Technol. 22, 1066-1076 (2004).
  10. S. Bottacchi, Multi-Gigabit Transmission Over Multimode Optical Fiber (Wiley, 2006) pp. 594-628.
  11. X. Shen, J. M. Kahn, M. A. Horowitz, "Compensation for multimode fiber dispersion by adaptive optics," Opt. Lett. 30, 2985-2987 (2005).
  12. S. H. Yam, F. T. An, M. E. Marhic, L. G. Kazovsky, "Polariztion sensitivity of 40 Gb/s transmission over short reach 62.5 $\mu{\hbox {m}}$ multimode fiber using single-mode transceivers," Proc. Opt. Fiber Commun. Conf. (2004) pp. 3.
  13. E. Rochat, S. D. Walker, M. C. Parker, "Ultra-wideband capacity enhancement of 50 $\mu{\hbox {m}}$ multimode fiber links up to 3 km using orthogonal polarization transmission in C-band," Proc. Eur. Conf. Opt. Commun. (2002) pp. 2.
  14. S. Fan, J. M. Kahn, "Principal modes in multimode waveguides," Opt. Lett. 30, 135-137 (2005).
  15. R. Khosravani, I. T. Lima, P. Ebrahimi, E. Ibragimov, A. E. Willner, C. R. Menyuk, "Time and frequency domain characteristics of polarization-mode dispersion emulators," IEEE Photon. Technol. Letters 13, 127-129 (2001).
  16. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1974).
  17. D. Marcuse, Light Transmission Optics (Bell Telephone Laboratories, 1972).
  18. G. Ghosh, H. Yajima, "Pressure-dependent Sellmeier coefficients and material dispersions for silica fiber glass," J. Lightw. Technol. 16, 2002-2005 (1998).
  19. S. C. Rashleigh, "Origins and control of polarization effects in single-mode fibers," J. Lightw. Technol. LT-1, 312-331 (1983).
  20. K. Iizuka, Elements of Photonics in Free Space and Special Media (Wiley, 2002) pp. 383.
  21. B. K. Garside, T. K. Lim, T. K. , J. P. Marton, "Propagation characteristics of parabolic-index fiber modes: Linearly polarized approximation," J. Opt. Soc Amer. 70, 395-400 (1980).
  22. C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (Wiley, 1977).
  23. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall Ltd., 1983) pp. 309.
  24. W. Mao, Multimode fiber communication using adaptive spatial filtering Ph.D. dissertation Univ. CaliforniaBerkeley (2005).
  25. H. F. Taylor, "Power loss at directional change in dielectric waveguides," Appl. Opt. 13, 642-647 (1974).
  26. H. F. Taylor, "Bending effects in optical fiber," J. Lightw. Technol. LT-2, 617-628 (1984).
  27. H. E. Rowe, Electromagnetic PropagationIin Multi-Mode Random Media (Wiley, 1999).
  28. A. B. Carlson, P. B. Crilly, J. C. Rutledge, Communication Systems (McGraw-Hill, 2002) pp. 359.
  29. C. L. Vazquez, Multiple Precession Toolbox for Matlab The Digital Map Inc. http://www.thedigitalmap.com/~carlos/software/ (2007).
  30. D. Goldstein, Polarized Light (Marcel Dekker, 2003) pp. 21-47.
  31. S. Betti, F. Curti, B. Daino, G. De Marchis, E. Iannone, F. Matera, "Evolution of the bandwidth of the principal states of polarization in single-mode fibers," Opt. Lett. 16, 467-469 (1991).

2005 (2)

2004 (1)

D. A. Nolan, X. Chen, M. J. Li, "Fibers with low polarization-mode dispersion," J. Lightw. Technol. 22, 1066-1076 (2004).

2001 (1)

R. Khosravani, I. T. Lima, P. Ebrahimi, E. Ibragimov, A. E. Willner, C. R. Menyuk, "Time and frequency domain characteristics of polarization-mode dispersion emulators," IEEE Photon. Technol. Letters 13, 127-129 (2001).

1998 (3)

G. Ghosh, H. Yajima, "Pressure-dependent Sellmeier coefficients and material dispersions for silica fiber glass," J. Lightw. Technol. 16, 2002-2005 (1998).

A. F. Garito, J. Wang, R. Gao, "Effects of random perturbations in plastic optical fibers," Science 281, 962-967 (1998).

D. A. Nolan, M. J. Li, "Fiber spin-profile designs for producing fibers with low polarization mode dispersion," Opt. Lett. 23, 1659-1661 (1998).

1991 (1)

1988 (1)

1986 (1)

C. D. Poole, R. E. Wagner, "Phenomenological approach to polarization dispersion in long single-mode fibers," Electron. Lett. 22, 1029-1030 (1986).

1984 (1)

H. F. Taylor, "Bending effects in optical fiber," J. Lightw. Technol. LT-2, 617-628 (1984).

1983 (1)

S. C. Rashleigh, "Origins and control of polarization effects in single-mode fibers," J. Lightw. Technol. LT-1, 312-331 (1983).

1980 (2)

B. K. Garside, T. K. Lim, T. K. , J. P. Marton, "Propagation characteristics of parabolic-index fiber modes: Linearly polarized approximation," J. Opt. Soc Amer. 70, 395-400 (1980).

K.-I. Kitayama, S. Sikai, N. Uchida, "Impulse response prediction based on experimental Mode coupling coefficient in a 10-km long graded-index fiber," IEEE J. Quantum Electron. QE-16, 356-362 (1980).

1975 (1)

1974 (1)

1973 (1)

D. Marcuse, "Losses and impulse response of a parabolic index fiber with random bends," Bell Syst. Tech. J. 52, 1423-1437 (1973).

1972 (1)

D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1780 (1972).

Appl. Opt. (2)

Bell Syst. Tech. J. (1)

D. Marcuse, "Losses and impulse response of a parabolic index fiber with random bends," Bell Syst. Tech. J. 52, 1423-1437 (1973).

Bell Syst. Tech. J. (1)

D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1780 (1972).

Electron. Lett. (1)

C. D. Poole, R. E. Wagner, "Phenomenological approach to polarization dispersion in long single-mode fibers," Electron. Lett. 22, 1029-1030 (1986).

IEEE Photon. Technol. Letters (1)

R. Khosravani, I. T. Lima, P. Ebrahimi, E. Ibragimov, A. E. Willner, C. R. Menyuk, "Time and frequency domain characteristics of polarization-mode dispersion emulators," IEEE Photon. Technol. Letters 13, 127-129 (2001).

IEEE J. Quantum Electron. (1)

K.-I. Kitayama, S. Sikai, N. Uchida, "Impulse response prediction based on experimental Mode coupling coefficient in a 10-km long graded-index fiber," IEEE J. Quantum Electron. QE-16, 356-362 (1980).

J. Opt. Soc Amer. (1)

B. K. Garside, T. K. Lim, T. K. , J. P. Marton, "Propagation characteristics of parabolic-index fiber modes: Linearly polarized approximation," J. Opt. Soc Amer. 70, 395-400 (1980).

J. Lightw. Technol. (4)

H. F. Taylor, "Bending effects in optical fiber," J. Lightw. Technol. LT-2, 617-628 (1984).

G. Ghosh, H. Yajima, "Pressure-dependent Sellmeier coefficients and material dispersions for silica fiber glass," J. Lightw. Technol. 16, 2002-2005 (1998).

S. C. Rashleigh, "Origins and control of polarization effects in single-mode fibers," J. Lightw. Technol. LT-1, 312-331 (1983).

D. A. Nolan, X. Chen, M. J. Li, "Fibers with low polarization-mode dispersion," J. Lightw. Technol. 22, 1066-1076 (2004).

Opt. Lett. (1)

D. A. Nolan, M. J. Li, "Fiber spin-profile designs for producing fibers with low polarization mode dispersion," Opt. Lett. 23, 1659-1661 (1998).

Opt. Lett. (4)

Science (1)

A. F. Garito, J. Wang, R. Gao, "Effects of random perturbations in plastic optical fibers," Science 281, 962-967 (1998).

Other (13)

S. H. Yam, F. T. An, M. E. Marhic, L. G. Kazovsky, "Polariztion sensitivity of 40 Gb/s transmission over short reach 62.5 $\mu{\hbox {m}}$ multimode fiber using single-mode transceivers," Proc. Opt. Fiber Commun. Conf. (2004) pp. 3.

E. Rochat, S. D. Walker, M. C. Parker, "Ultra-wideband capacity enhancement of 50 $\mu{\hbox {m}}$ multimode fiber links up to 3 km using orthogonal polarization transmission in C-band," Proc. Eur. Conf. Opt. Commun. (2002) pp. 2.

S. Bottacchi, Multi-Gigabit Transmission Over Multimode Optical Fiber (Wiley, 2006) pp. 594-628.

K. Iizuka, Elements of Photonics in Free Space and Special Media (Wiley, 2002) pp. 383.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1974).

D. Marcuse, Light Transmission Optics (Bell Telephone Laboratories, 1972).

H. E. Rowe, Electromagnetic PropagationIin Multi-Mode Random Media (Wiley, 1999).

A. B. Carlson, P. B. Crilly, J. C. Rutledge, Communication Systems (McGraw-Hill, 2002) pp. 359.

C. L. Vazquez, Multiple Precession Toolbox for Matlab The Digital Map Inc. http://www.thedigitalmap.com/~carlos/software/ (2007).

D. Goldstein, Polarized Light (Marcel Dekker, 2003) pp. 21-47.

C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (Wiley, 1977).

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall Ltd., 1983) pp. 309.

W. Mao, Multimode fiber communication using adaptive spatial filtering Ph.D. dissertation Univ. CaliforniaBerkeley (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.