Abstract

The noise figure of silicon Raman amplifiers in the presence of nonlinear losses is calculated. The impact of two-photon absorption (TPA) and free-carrier scattering on the noise figure is quantified using the quantum formulation of the Langevin approach. It is found that TPA-induced free-carrier loss degrades the noise figure by an amount that depends on the carrier lifetime. For example, in a 1-cm-long waveguide pumped at 200 MW/cm<sup>2</sup>, the noise figure is 5.2 dB for a lifetime of τ=1.6 ns and is reduced to 3.7 dB for τ= = 0.1 ns. The reduction in the noise figure along with a concomitant increase in Raman gain from 2 to 8 dB suggests that lifetimes on the order of 0.1 ns or less are needed to create a useful silicon Raman amplifier that operates in the continuous-wave mode. It is also shown that in devices that use a p-n junction for carrier sweep-out, the screening of the junction field by generated free carriers results in a sharp increase in the noise figure at high-pump intensities. These results apply to operation in the near-infrared communication wavelengths. For mid-infrared wavelengths above the two photon absorption band-edge (2.3 nm), the absence of TPA and pump-induced free-carrier absorption ensures that the amplifier has a low-noise figure.

© 2008 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. O. Boyraz, B. Jalali, "Demonstration of 11 dB fiber-to-fiber gain in a silicon Raman amplifier," IEICE Electron. Exp. 1, 429-434 (2004).
  2. T. K. Liang, H. K. Tsang, "Efficient Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 85, 3343-3343 (2004).
  3. X. Qianfan, V. R. Almeida, M. Lipson, "Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides," Opt. Exp. 12, 20-20 (2004).
  4. O. Boyraz, B. Jalali, "Demonstration of a silicon Raman laser," Opt. Exp. 12, 5269-5269 (2004).
  5. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-725 (2005).
  6. D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, B. Jalali, "Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides," Appl. Phys. Lett. 86, 071115-071115 (2005).
  7. D. Dimitropoulos, S. Fathpour, B. Jalali, "Limitations of active carrier removal in silicon Raman lasers and amplifiers," Appl. Phys. Lett. 87, 261108-261108 (2005).
  8. H. A. Haus, Electromagnetic Noise and Quantum Optical Measurements (Springer, 2000).
  9. Y. Liu, H. K. Tsang, "Nonlinear absorption and Raman gain in helium ion implanted silicon waveguides," Opt. Lett. 31, 1714-1716 (2006).
  10. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115-031115 (2007).
  11. R. L. Espinola, J. I. Dadap, R. M. Osgood, JrS. J. McNab, Y. A. Vlasov, "Raman amplification in ultrasmall silicon-on-insulator wire waveguides," Opt. Exp. 12, 3713-3713 (2004).
  12. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, A. L. Gaeta, CLEO CTuFF3 (2004).
  13. B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, O. Stafsudd, "Prospects for silicon mid-IR Raman lasers," IEEE J. Sel. Topics Quant. Electron. 12, 1618-1627 (2006).
  14. C. R. S. Fludger, V. Handerek, R. J. Mears, "Pump to signal RIN transfer in Raman fiber amplifiers," J. Lightw. Technol. 19, 1140-1148 (2001).

2007 (1)

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115-031115 (2007).

2006 (2)

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, O. Stafsudd, "Prospects for silicon mid-IR Raman lasers," IEEE J. Sel. Topics Quant. Electron. 12, 1618-1627 (2006).

Y. Liu, H. K. Tsang, "Nonlinear absorption and Raman gain in helium ion implanted silicon waveguides," Opt. Lett. 31, 1714-1716 (2006).

2005 (3)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-725 (2005).

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, B. Jalali, "Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides," Appl. Phys. Lett. 86, 071115-071115 (2005).

D. Dimitropoulos, S. Fathpour, B. Jalali, "Limitations of active carrier removal in silicon Raman lasers and amplifiers," Appl. Phys. Lett. 87, 261108-261108 (2005).

2004 (5)

R. L. Espinola, J. I. Dadap, R. M. Osgood, JrS. J. McNab, Y. A. Vlasov, "Raman amplification in ultrasmall silicon-on-insulator wire waveguides," Opt. Exp. 12, 3713-3713 (2004).

O. Boyraz, B. Jalali, "Demonstration of 11 dB fiber-to-fiber gain in a silicon Raman amplifier," IEICE Electron. Exp. 1, 429-434 (2004).

T. K. Liang, H. K. Tsang, "Efficient Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 85, 3343-3343 (2004).

X. Qianfan, V. R. Almeida, M. Lipson, "Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides," Opt. Exp. 12, 20-20 (2004).

O. Boyraz, B. Jalali, "Demonstration of a silicon Raman laser," Opt. Exp. 12, 5269-5269 (2004).

2001 (1)

C. R. S. Fludger, V. Handerek, R. J. Mears, "Pump to signal RIN transfer in Raman fiber amplifiers," J. Lightw. Technol. 19, 1140-1148 (2001).

Appl. Phys. Lett. (4)

T. K. Liang, H. K. Tsang, "Efficient Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 85, 3343-3343 (2004).

D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, B. Jalali, "Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides," Appl. Phys. Lett. 86, 071115-071115 (2005).

D. Dimitropoulos, S. Fathpour, B. Jalali, "Limitations of active carrier removal in silicon Raman lasers and amplifiers," Appl. Phys. Lett. 87, 261108-261108 (2005).

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115-031115 (2007).

IEEE J. Sel. Topics Quant. Electron. (1)

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, O. Stafsudd, "Prospects for silicon mid-IR Raman lasers," IEEE J. Sel. Topics Quant. Electron. 12, 1618-1627 (2006).

IEICE Electron. Exp. (1)

O. Boyraz, B. Jalali, "Demonstration of 11 dB fiber-to-fiber gain in a silicon Raman amplifier," IEICE Electron. Exp. 1, 429-434 (2004).

J. Lightw. Technol. (1)

C. R. S. Fludger, V. Handerek, R. J. Mears, "Pump to signal RIN transfer in Raman fiber amplifiers," J. Lightw. Technol. 19, 1140-1148 (2001).

Nature (1)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-725 (2005).

Opt. Exp. (1)

R. L. Espinola, J. I. Dadap, R. M. Osgood, JrS. J. McNab, Y. A. Vlasov, "Raman amplification in ultrasmall silicon-on-insulator wire waveguides," Opt. Exp. 12, 3713-3713 (2004).

Opt. Exp. (2)

X. Qianfan, V. R. Almeida, M. Lipson, "Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides," Opt. Exp. 12, 20-20 (2004).

O. Boyraz, B. Jalali, "Demonstration of a silicon Raman laser," Opt. Exp. 12, 5269-5269 (2004).

Opt. Lett. (1)

Other (2)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, A. L. Gaeta, CLEO CTuFF3 (2004).

H. A. Haus, Electromagnetic Noise and Quantum Optical Measurements (Springer, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.