Abstract

A method for modeling the fabrication of capillary tubes is developed that includes the effects of preform rotation, and is used to reduce or remove polarization mode dispersion and fiber birefringence. The model is solved numerically, making use of extensive experimental investigations into furnace temperature profiles and silica glass viscosities, without the use of fitting parameters. Accurate predictions of the geometry of spun capillary tubes are made and compared directly with experimental results, showing remarkable agreement and demonstrating that the mathematical modeling of fiber drawing promises to be an accurate predictive tool for experimenters. Finally, a discussion of how this model impacts on the rotation of more general microstructured optical fiber preforms is given.

© 2008 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, A. J. Stentz, "Optical properties of high-delta air-silica microstructure optical fibers," Opt. Lett. 25, 796-798 (2000).
  2. T. M. Monro, D. J. Richardson, N. G. R. Broderick, P. J. Bennett, "Holey optical fibers: An efficient modal model," J. Lightw. Technol. 17, 1093-1102 (1999).
  3. T. M. Monro, D. J. Richardson, P. J. Bennett, "Developing holey fibers for evanescent field devices," Electron Lett. 35, 1188-1189 (1999).
  4. A. J. Barlow, J. J. Ramskov-Hansen, D. N. Payne, "Birefringence and polarization mode-dispersion in spun single-mode fibers," Appl. Opt. 20, 2962-2968 (1981).
  5. M. J. Li, D. A. Nolan, "Fiber spin-profile designs for producing fibers with low polarization mode dispersion," Opt. Lett. 23, 1659-1661 (1998).
  6. R. E. Schuh, X. K. Shan, A. S. Siddiqui, "Polarization mode dispersion in spun fibers with different linear birefringence and spinning parameters," J. Lightw. Technol. 16, 1583-1588 (1998).
  7. M. Fuochi, J. R. Hayes, K. Furusawa, W. Belardi, J. C. Baggett, T. M. Monro, D. J. Richardson, "Polarization mode dispersion reduction in spun large mode area silica holey fibres," Opt. Express 12, 1972-1977 (2004).
  8. J. R. Hayes, Personal Communication Univ. Southampton, Optoelectronics Research CentreSouthamptonU.K. (2003).
  9. C. J. Voyce, A. D. Fitt, T. M. Monro, "The mathematical modelling of rotating capillary tubes for holey-fibre manufacture," J. Eng. Math. 60, 68-87 (2008).
  10. C. J. Voyce, A. D. Fitt, T. M. Monro, "Mathematical model of the spinning of microstructured fibres," Opt. Express 12, 5810-5820 (2004).
  11. A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, "Modeling the fabrication of hollow fibers: Capillary drawing," J. Lightw. Technol. 19, 1924-31 (2001).
  12. A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, D. J. Richardson, "The mathematical modelling of capillary drawing for holey fibre manufacture," J. Eng. Math. 43, 201-227 (2002).
  13. C. J. Voyce, A. D. Fitt, T. M. Monro, Progress in Industrial Mathematics at ECMI 2002 (Springer-Verlag, 2004) pp. 387-391.
  14. C. J. Voyce, The mathematical modelling of microstructured optical fibres Ph.D. dissertation Sch. Math. Univ. SouthamptonSouthamptonU.K. (2005).
  15. R. H. Doremus, "Viscosity of silica," J. Appl. Phys. 92, 7619-7629 (2002).
  16. G. Hetherington, K. H. Jack, J. C. Kennedy, "The viscosity of vitreous silica," Phys. Chem. Glasses 5, 130-136 (1964).
  17. G. Urbain, Y. Bottinga, P. Richet, "Viscosity of liquid silica, silicates and alumino-silicates," Geochimica Cosmochimica Acta 46, 1061-1072 (1982).
  18. Module Documentation for the Numerical Algorithms Group (Nag), Limited, Routine d02haf http://gams.nist.gov/serve.cgi/Module/NAG/D02HAF/681/.

2008

C. J. Voyce, A. D. Fitt, T. M. Monro, "The mathematical modelling of rotating capillary tubes for holey-fibre manufacture," J. Eng. Math. 60, 68-87 (2008).

2004

2002

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, D. J. Richardson, "The mathematical modelling of capillary drawing for holey fibre manufacture," J. Eng. Math. 43, 201-227 (2002).

R. H. Doremus, "Viscosity of silica," J. Appl. Phys. 92, 7619-7629 (2002).

2001

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, "Modeling the fabrication of hollow fibers: Capillary drawing," J. Lightw. Technol. 19, 1924-31 (2001).

2000

1999

T. M. Monro, D. J. Richardson, N. G. R. Broderick, P. J. Bennett, "Holey optical fibers: An efficient modal model," J. Lightw. Technol. 17, 1093-1102 (1999).

T. M. Monro, D. J. Richardson, P. J. Bennett, "Developing holey fibers for evanescent field devices," Electron Lett. 35, 1188-1189 (1999).

1998

R. E. Schuh, X. K. Shan, A. S. Siddiqui, "Polarization mode dispersion in spun fibers with different linear birefringence and spinning parameters," J. Lightw. Technol. 16, 1583-1588 (1998).

M. J. Li, D. A. Nolan, "Fiber spin-profile designs for producing fibers with low polarization mode dispersion," Opt. Lett. 23, 1659-1661 (1998).

1982

G. Urbain, Y. Bottinga, P. Richet, "Viscosity of liquid silica, silicates and alumino-silicates," Geochimica Cosmochimica Acta 46, 1061-1072 (1982).

1981

1964

G. Hetherington, K. H. Jack, J. C. Kennedy, "The viscosity of vitreous silica," Phys. Chem. Glasses 5, 130-136 (1964).

Appl. Opt.

Electron Lett.

T. M. Monro, D. J. Richardson, P. J. Bennett, "Developing holey fibers for evanescent field devices," Electron Lett. 35, 1188-1189 (1999).

Geochimica Cosmochimica Acta

G. Urbain, Y. Bottinga, P. Richet, "Viscosity of liquid silica, silicates and alumino-silicates," Geochimica Cosmochimica Acta 46, 1061-1072 (1982).

J. Lightw. Technol.

R. E. Schuh, X. K. Shan, A. S. Siddiqui, "Polarization mode dispersion in spun fibers with different linear birefringence and spinning parameters," J. Lightw. Technol. 16, 1583-1588 (1998).

J. Appl. Phys.

R. H. Doremus, "Viscosity of silica," J. Appl. Phys. 92, 7619-7629 (2002).

J. Eng. Math.

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, D. J. Richardson, "The mathematical modelling of capillary drawing for holey fibre manufacture," J. Eng. Math. 43, 201-227 (2002).

C. J. Voyce, A. D. Fitt, T. M. Monro, "The mathematical modelling of rotating capillary tubes for holey-fibre manufacture," J. Eng. Math. 60, 68-87 (2008).

J. Lightw. Technol.

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, "Modeling the fabrication of hollow fibers: Capillary drawing," J. Lightw. Technol. 19, 1924-31 (2001).

T. M. Monro, D. J. Richardson, N. G. R. Broderick, P. J. Bennett, "Holey optical fibers: An efficient modal model," J. Lightw. Technol. 17, 1093-1102 (1999).

Opt. Express

Opt. Lett.

Phys. Chem. Glasses

G. Hetherington, K. H. Jack, J. C. Kennedy, "The viscosity of vitreous silica," Phys. Chem. Glasses 5, 130-136 (1964).

Other

C. J. Voyce, A. D. Fitt, T. M. Monro, Progress in Industrial Mathematics at ECMI 2002 (Springer-Verlag, 2004) pp. 387-391.

C. J. Voyce, The mathematical modelling of microstructured optical fibres Ph.D. dissertation Sch. Math. Univ. SouthamptonSouthamptonU.K. (2005).

J. R. Hayes, Personal Communication Univ. Southampton, Optoelectronics Research CentreSouthamptonU.K. (2003).

Module Documentation for the Numerical Algorithms Group (Nag), Limited, Routine d02haf http://gams.nist.gov/serve.cgi/Module/NAG/D02HAF/681/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.