Abstract

We describe the development of an optically clocked transistor array (OCTA) interface device for label swapping high-speed asynchronous burst optical packets. The OCTA integrates the three critical functions of serial-to-parallel (SP) conversion, parallel-to-serial (PS) conversion, and clock-pulse generation into a simple optoelectronic integrated circuit (OEIC) to create a single-chip interface between the input/output baseband optical labels and a CMOS label processor. The result is a high-performance label swapping solution which is compact and low power. In this paper, a detailed investigation of the design and optimization of the circuit is first performed, followed by testing of device stability under subsystem operating conditions. Finally, demonstrations of single-channel switching speeds allowing greater than 100-Gb/s operation, 40-Gb/s SP and PS conversion with an eight-channel OCTA, and error-free label swapping of 10-Gb/s asynchronous optical packets with a prototype label swapper module are described.

© 2008 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription