Abstract

In this paper, an optically controlled tunable delay scheme has been proposed using four-wave mixing (FWM) wavelength conversion in a 35-cm highly nonlinear bismuth-oxide fiber (Bi-NLF) together with group velocity dispersion (GVD) in a chirped fiber Bragg grating (CFBG). The Bi-NLF offers a very large nonlinearity and gives rise to significant FWM over a short fiber segment. With the use of a CFBG, a delay range over 185 ps has been experimentally demonstrated. To investigate the performance of the tunable delay, we have applied the scheme for variable delays of 10-Gb/s amplitude-shift keying (ASK) and differential phase-shift keying (DPSK) data signals. The bit error rate (BER) measurements show a power penalty of less than 3.5 dB for both amplitude- and phase-modulated data formats. To further increase the delay time, the CFBG has been replaced by a dispersion compensated fiber (DCF) that provides a wider bandwidth of operation. A variable delay up to 840 ps has been obtained using dual-pump FWM that offers a conversion bandwidth of about 40 nm. The large conversion range helps to minimize GVD-induced pulse distortion as a shorter DCF can be used for a given delay. The Bi-NLF provides an enhanced stimulated Brillouin scattering (SBS) threshold, a reduced latency, and an increased compactness of the approach for practical applications.

© 2008 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. G. Lenz, B. J. Eggleton, C. K. Madsen, R. E. Slusher, "Optical delay lines based on optical filters," IEEE J. Quantum Electron. 37, 525-532 (2001).
  2. I. Kobayashi, K. Kuroda, "Step-type optical delay line using silica-based planar light-wave circuit (PLC) technology," IEEE Trans. Instrum. Meas. 49, 762-765 (2000).
  3. R. W. Boyd, D. J. Gauthier, Progress in Optics (Elsevier, 2002) pp. 497-530.
  4. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
  5. M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 113 903 (2003).
  6. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153 902 (2005).
  7. J. E. Sharping, Y. Okawachi, A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005).
  8. J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, A. L. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion," Opt. Express 13, 7872-7877 (2005).
  9. S. Oda, A. Maruta, "All-optical tunable delay line based on soliton self-frequency shift and filtering broadened spectrum due to self-phase modulation," Opt. Express 14, 7895-7902 (2006).
  10. M. P. Fok, C. Shu, "Tunable pulse delay using four-wave mixing in a 35-cm bismuth oxide highly nonlinear fiber and dispersion in a chirped fiber Bragg grating," Proc. Eur. Conf. Opt. Commun. (2006).
  11. M. P. Fok, C. Shu, "Performance investigation of tunable optical delay for ASK and DPSK signals using four-wave mixing wavelength conversion in a bismuth oxide highly nonlinear fiber," Proc. Opt. Fiber Commun. Conf./Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC) (2007).
  12. J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, "Experimental comparison of a Kerr nonlinearity figure of merit including the stimulated Brillouin scattering threshold for state-of-the-art nonlinear optical fibers," Opt. Lett. 30, 1698-1700 (2005).
  13. J. X. Ma, J. J. Yu, C. X. Yu, Z. S. Jia, X. Z. Sang, Z. Zhou, T. Wang, G. K. Chang, "Wavelength conversion based on four-wave mixing in high-nonlinear dispersion shifted fiber using a dual-pump configuration," J. Lightw. Technol 24, 2851-2858 (2006).
  14. H. Su, P. Kondratko, S. L. Chuang, "Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers," Opt. Express 14, 4800-4807 (2006).
  15. B. Pesala, Z. Chen, A. V. Uskov, C. Chang-Hasnain, "Experimental demonstration of slow and superluminal light in semiconductor optical amplifiers," Opt. Express 14, 12968-12975 (2006).

2006 (4)

2005 (4)

2003 (1)

M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 113 903 (2003).

2001 (1)

G. Lenz, B. J. Eggleton, C. K. Madsen, R. E. Slusher, "Optical delay lines based on optical filters," IEEE J. Quantum Electron. 37, 525-532 (2001).

2000 (1)

I. Kobayashi, K. Kuroda, "Step-type optical delay line using silica-based planar light-wave circuit (PLC) technology," IEEE Trans. Instrum. Meas. 49, 762-765 (2000).

1999 (1)

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).

IEEE J. Quantum Electron. (1)

G. Lenz, B. J. Eggleton, C. K. Madsen, R. E. Slusher, "Optical delay lines based on optical filters," IEEE J. Quantum Electron. 37, 525-532 (2001).

IEEE Trans. Instrum. Meas. (1)

I. Kobayashi, K. Kuroda, "Step-type optical delay line using silica-based planar light-wave circuit (PLC) technology," IEEE Trans. Instrum. Meas. 49, 762-765 (2000).

J. Lightw. Technol (1)

J. X. Ma, J. J. Yu, C. X. Yu, Z. S. Jia, X. Z. Sang, Z. Zhou, T. Wang, G. K. Chang, "Wavelength conversion based on four-wave mixing in high-nonlinear dispersion shifted fiber using a dual-pump configuration," J. Lightw. Technol 24, 2851-2858 (2006).

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. Lett. (3)

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999).

M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 113 903 (2003).

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153 902 (2005).

Other (3)

R. W. Boyd, D. J. Gauthier, Progress in Optics (Elsevier, 2002) pp. 497-530.

M. P. Fok, C. Shu, "Tunable pulse delay using four-wave mixing in a 35-cm bismuth oxide highly nonlinear fiber and dispersion in a chirped fiber Bragg grating," Proc. Eur. Conf. Opt. Commun. (2006).

M. P. Fok, C. Shu, "Performance investigation of tunable optical delay for ASK and DPSK signals using four-wave mixing wavelength conversion in a bismuth oxide highly nonlinear fiber," Proc. Opt. Fiber Commun. Conf./Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC) (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.