Abstract

In this paper, Brillouin gain performances of tellurite fiber are investigated for photonics applications. We demonstrate stimulated Brillouin amplification and lasing and the simulated performance of slow light generation in a single-mode tellurite fiber. A Brillouin gain of 29 dB is achieved in a 100-m tellurite fiber with a pump power of 10 mW at 1550 nm. A peak value of Brillouin gain coefficients of 1.6989 x 10<sup>-10</sup> m/W is measured on the base of gain characteristics. An all-fiber Brillouin laser with the maximum unsaturated power of 54.6 mW at 1550 nm and a slope efficiency of 38.2% is achieved from a 200-m tellurite fiber by employing a ring cavity. Furthermore, widely tunable (~27 nm) Brillouin comb laser with 26 lines spaced at 7.97 GHz is obtained from the ring laser cavity including an erbium-doped fiber amplifier (EDFA). A simple theoretical model based on laser threshold theory successfully explains the properties of Brillouin comb lasers. Stimulated Brillouin scattering (SBS)-induced time delay per unit power and per unit length is also calculated using the measured data of Brillouin gain coefficients. A peak value of 0.09246 ns/mW/m and a time delay slope efficiency of 1.75 ns/dB are obtained for this tellurite fiber. Potential performance of a tellurite fiber for slow light generation is clarified on the base of Brillouin gain characteristic. Our results show that tellurite fiber is a promising gain medium for Brillouin fiber amplifiers, lasers, and slow light generation due to its low background loss and large Brillouin gain coefficient.

© 2008 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription