Abstract

This paper examines the properties of optical resonator memory cells, in which a data bit is stored in a high-<i>Q</i> optical resonator. It is shown that resonator-based optical memories are ultimately limited by losses in the resonators, by the extinction ratio and chirp of the variable coupling medium that injects and extracts data into and out of the resonators, and by chirp on the input signal. Using a simple analytical model and accurate field-based simulations, we analyze the performance of a ring-resonator optical memory cell and compare this with the performance of slow light delay line buffer memories and complementary metal–oxide–semiconductor embedded dynamic random-access memory.

© 2008 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. H. Yang, S. J. B. Yoo, "All-optical variable buffering strategies and switch fabric architectures for future all-optical data routers," J. Lightw. Technol. 23, 3321-3330 (2005).
  2. J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: Comparative analysis," J. Opt. Soc. Amer. B, Opt. Phys. 22, 1062-1074 (2005).
  3. R. S. Tucker, P.-C. Ku, C. J. Chang-Hasnain, "Slow-light optical buffers: Capabilities and fundamental limitations," J. Lightw. Technol. 23, 4046-4066 (2005).
  4. T. Asano, S. Noda, "Ultra-high-Q photonic nanocavities and trapping of ultra-short optical pulses," Proc. Top. Meeting Slow Fast Light (2006) pp. MB41-2.
  5. J. Guo, M. J. Shaw, G. A. Vawter, P. Esherick, G. R. Handley, C. Sullivan, "High-Q integrated on-chip micro-ring resonator," Proc. IEEE Lasers Electro-Opt. Soc. Annu. Meeting (2004) pp. 745-746.
  6. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, L. Maleki, "Ultrahigh-Q crystalline optical whispering gallery mode resonators," Proc. LEOS Summer Top. Meeting Biophotonics/Opt. Interconnects VLSI Photon. (2004) pp. 29-30.
  7. Q. Xu, P. Dong, M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nat. Phys. 3, 406-410 (2007).
  8. J. Spring, R. S. Tucker, "Photonic 2 x 2 packet switch with input buffers," Electron. Lett. 29, 284-285 (1993).
  9. R. E. Collin, Foundations for Microwave Engineering (Wiley, 1992).
  10. O. Schwelb, "Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters—A tutorial overview," J. Lightw. Technol. 22, 1380-1394 (2004).
  11. A. Lowery, O. Lenzmann, I. Koltchanov, R. Moosburger, R. Freund, A. Richter, S. Georgi, D. Breuer, H. Hamster, "Multiple signal representation simulation of photonic devices, systems, and networks," IEEE J. Sel. Topics Quantum Electron. 6, 282-296 (2000).
  12. F. Koyama, K. Iga, "Frequency chirping in external modulators," J. Lightw. Technol. 6, 87-93 (1988).
  13. R. S. Tucker, "The role of optics and electronics in high-capacity routers," J. Lightw. Technol. 24, 4655-4673 (2006).
  14. J. Khurgin, "Power dissipation in slow light devices—Comparative analysis," Opt. Lett. 32, 163-165 (2007).
  15. J. Khurgin, "Adiabatically tunable optical delay lines and their performance limitations," Opt. Lett. 30, 2778-2780 (2005).
  16. International Technology Roadmap for Semiconductors, 2005 Edition, (2005) http://public.itrs.net/.

2007 (2)

Q. Xu, P. Dong, M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nat. Phys. 3, 406-410 (2007).

J. Khurgin, "Power dissipation in slow light devices—Comparative analysis," Opt. Lett. 32, 163-165 (2007).

2006 (1)

R. S. Tucker, "The role of optics and electronics in high-capacity routers," J. Lightw. Technol. 24, 4655-4673 (2006).

2005 (4)

J. Khurgin, "Adiabatically tunable optical delay lines and their performance limitations," Opt. Lett. 30, 2778-2780 (2005).

H. Yang, S. J. B. Yoo, "All-optical variable buffering strategies and switch fabric architectures for future all-optical data routers," J. Lightw. Technol. 23, 3321-3330 (2005).

J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: Comparative analysis," J. Opt. Soc. Amer. B, Opt. Phys. 22, 1062-1074 (2005).

R. S. Tucker, P.-C. Ku, C. J. Chang-Hasnain, "Slow-light optical buffers: Capabilities and fundamental limitations," J. Lightw. Technol. 23, 4046-4066 (2005).

2004 (1)

O. Schwelb, "Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters—A tutorial overview," J. Lightw. Technol. 22, 1380-1394 (2004).

2000 (1)

A. Lowery, O. Lenzmann, I. Koltchanov, R. Moosburger, R. Freund, A. Richter, S. Georgi, D. Breuer, H. Hamster, "Multiple signal representation simulation of photonic devices, systems, and networks," IEEE J. Sel. Topics Quantum Electron. 6, 282-296 (2000).

1993 (1)

J. Spring, R. S. Tucker, "Photonic 2 x 2 packet switch with input buffers," Electron. Lett. 29, 284-285 (1993).

1988 (1)

F. Koyama, K. Iga, "Frequency chirping in external modulators," J. Lightw. Technol. 6, 87-93 (1988).

Electron. Lett. (1)

J. Spring, R. S. Tucker, "Photonic 2 x 2 packet switch with input buffers," Electron. Lett. 29, 284-285 (1993).

IEEE J. Sel. Topics Quantum Electron. (1)

A. Lowery, O. Lenzmann, I. Koltchanov, R. Moosburger, R. Freund, A. Richter, S. Georgi, D. Breuer, H. Hamster, "Multiple signal representation simulation of photonic devices, systems, and networks," IEEE J. Sel. Topics Quantum Electron. 6, 282-296 (2000).

J. Lightw. Technol. (5)

F. Koyama, K. Iga, "Frequency chirping in external modulators," J. Lightw. Technol. 6, 87-93 (1988).

R. S. Tucker, "The role of optics and electronics in high-capacity routers," J. Lightw. Technol. 24, 4655-4673 (2006).

O. Schwelb, "Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters—A tutorial overview," J. Lightw. Technol. 22, 1380-1394 (2004).

H. Yang, S. J. B. Yoo, "All-optical variable buffering strategies and switch fabric architectures for future all-optical data routers," J. Lightw. Technol. 23, 3321-3330 (2005).

R. S. Tucker, P.-C. Ku, C. J. Chang-Hasnain, "Slow-light optical buffers: Capabilities and fundamental limitations," J. Lightw. Technol. 23, 4046-4066 (2005).

J. Opt. Soc. Amer. B, Opt. Phys. (1)

J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: Comparative analysis," J. Opt. Soc. Amer. B, Opt. Phys. 22, 1062-1074 (2005).

Nat. Phys. (1)

Q. Xu, P. Dong, M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nat. Phys. 3, 406-410 (2007).

Opt. Lett. (2)

Other (5)

International Technology Roadmap for Semiconductors, 2005 Edition, (2005) http://public.itrs.net/.

R. E. Collin, Foundations for Microwave Engineering (Wiley, 1992).

T. Asano, S. Noda, "Ultra-high-Q photonic nanocavities and trapping of ultra-short optical pulses," Proc. Top. Meeting Slow Fast Light (2006) pp. MB41-2.

J. Guo, M. J. Shaw, G. A. Vawter, P. Esherick, G. R. Handley, C. Sullivan, "High-Q integrated on-chip micro-ring resonator," Proc. IEEE Lasers Electro-Opt. Soc. Annu. Meeting (2004) pp. 745-746.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, L. Maleki, "Ultrahigh-Q crystalline optical whispering gallery mode resonators," Proc. LEOS Summer Top. Meeting Biophotonics/Opt. Interconnects VLSI Photon. (2004) pp. 29-30.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.