Abstract

Atomic vapors of alkali metals are widely used to slow and stop light in tabletop experiments. In order to take advantage of the underlying quantum interference effects in future commercial devices, highly reactive alkali atoms must be incorporated into small volumes with integrated optical access. With integration in mind, we describe the development of a hollow-core waveguide technology based on the combination of vapor-filled hollow waveguides and conventional solid-core waveguides on a silicon chip. We discuss the underlying principles of the waveguide design, the development of different approaches to building on-chip vapor cells, the demonstration of linear and nonlinear rubidium spectroscopy on a chip, and the prospects for quantum interference effects such as slow light and giant Kerr nonlinearities using this approach. Ultrasmall active vapor volumes on the order of 100 picoliters with simultaneously high optical density in excess of two illustrate the potential of planar hollow-core waveguides for linear and nonlinear optical spectroscopy of atoms confined on a chip.

© 2008 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription