Abstract

Simulated and measured results are presented for the coupling loss from free space into a large mode area (LMA) photonic crystal fiber. The total measured loss (using bulk optics) for a signal $(\lambda=1.55\ \mu{\hbox{m}})$ going in and out of a 1-m-long fiber was $-$2.15 dB. It was also observed that the fiber is not that sensitive to lateral misalignment compared that to the conventional single-mode fiber. Due to the low loss, this type of fiber could be used to create long delays in optical true-time-delay engines based on the White cell concept and others. The above loss can be further reduced by using field lenses or lensed LMA.LMA fibers are excellent media to create long optical true time delays with only $-$2.15 dB/m coupling loss.

© 2008 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. M. H. Frosz, K. Hougaard, S. B. Libori, J. Laegsgaard, A. Bjarklev, "Radial deformation losses in photonic crystal fibres," J. Opt. A, Pure Appl. Opt. 5, 268-271 (2003).
  2. M. D. Nielse, J. R. Folkenberg, N. A. Mortensen, A. Bjarklev, "Bandwidth comparison of photonic crystal fibers and conventional single-mode fibers," Opt. Express 12, (2004).
  3. T. A. Birks, J. C. Knight, P. S. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
  4. J. Zhou, K. Tajima, K. Nakajima, K. Kurokawa, C. Fukai, T. Matsui, I. Sankawa, "Progress on low loss photonic crystal fibers," Opt. Fiber Technol. 11, 101-110 (2005).
  5. P. J. Bennett, T. M. Monro, D. J. Richardson, "Toward practical holey fiber technology: Fabrication, splicing, modeling, and characterization," Opt. Lett. 24, (1999).
  6. Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, "Loss analysis of single-mode fiber/photonic-crystal fiber splice," Microw. Opt. Technol. Lett. 40, 378-380 (2004).
  7. T. Weyraucha, M. A. Vorontsova, J. W. Gowens, IIT. G. Bifanob, "Fiber coupling with adaptive optics for free-space optical communication," Proc. SPIE Free-Space Laser Commun. Laser Imag. (2002).
  8. J. C. W. Corbett, J. R. Allington-Smith, "Coupling starlight into single-mode photonic crystal fiber using a field lens," Opt. Express 13, 6527-6540 (2005).
  9. G.-J. Kong, J. Kim, H.-Y. Choi, J. E. Im, B.-H. Park, U.-C. Paek, B. H. Lee, "Lensed photonic crystal fiber obtained by use of an arc discharge," Opt. Lett. 31, 894-896 (2006).
  10. A. Malinowski, A. Piper, J. H. V. Price, F. He, M. Ibsen, J. Nilsson, D. J. Richardson, "Short pulse high power fiber laser systems," Proc. Conf. Lasers Electro-Opt. (CLEO) (2005) pp. 1647-1649.
  11. Y. Jiang, B. Howley, Z. Shi, O. Zhou, R. T. Chen, M. Y. Chen, G. Brost, C. Lee, "Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna," IEEE Photon. Technol. Lett. 17, 187-189 (2005).
  12. J. White, "Long optical paths of large aperture," J. Opt. Soc. Amer. 32, 285-288 (1942).
  13. S. Kunathikom, B. L. Anderson, S. A. Colins, Jr."Design of delay elements in a binary optical true-time-delay device that uses a White cell," Appl. Opt. 42, (2003).
  14. S. A. Collins, Jr.A binary cell for producing optically controlled incremental time delays for phased array radars, ElectroScience Laboratory, The Ohio State Univ. (2003) Tech. Rep.
  15. L. Lundgren, K. Vilhelmsson, "Mode excitation in graded-index optical fibers," J. Lightw. Technol. LT-2, 559-563 (1984).
  16. T. P. White, R. C. McPhedran, C. M. de Sterke, "Confinement losses in microstructured optical fibers," Opt. Lett. 26, (2001).
  17. T. Hirooka, Y. Hori, M. Nakazawa, "Gaussian and sech approximations of mode field profiles in photonic crystal fibers," IEEE Photon. Technol. Lett. 16, 1071-1073 (2004).
  18. J. Shiefman, "Insertion loss comparison of collimators used to propagate light in and out of single-mode fibers," Opt. Eng. 43, 1927-1937 (2004).
  19. M. D. Nielsen, "Single-mode photonic crystal fiber with an effective area of 600 $\mu{\hbox{m}}2$ and low bending loss," Inst. Elect. Eng. 39, (2003).
  20. N. A. Mortensen, M. D. Nielse, J. R. Folkenberg, A. Petersson, H. R. Simonsen, "Improved large-mode-area endlessly single-mode photonic crystal fibers," Opt. Lett. 28, (2003).

2006 (1)

2005 (3)

Y. Jiang, B. Howley, Z. Shi, O. Zhou, R. T. Chen, M. Y. Chen, G. Brost, C. Lee, "Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna," IEEE Photon. Technol. Lett. 17, 187-189 (2005).

J. Zhou, K. Tajima, K. Nakajima, K. Kurokawa, C. Fukai, T. Matsui, I. Sankawa, "Progress on low loss photonic crystal fibers," Opt. Fiber Technol. 11, 101-110 (2005).

J. C. W. Corbett, J. R. Allington-Smith, "Coupling starlight into single-mode photonic crystal fiber using a field lens," Opt. Express 13, 6527-6540 (2005).

2004 (4)

M. D. Nielse, J. R. Folkenberg, N. A. Mortensen, A. Bjarklev, "Bandwidth comparison of photonic crystal fibers and conventional single-mode fibers," Opt. Express 12, (2004).

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, "Loss analysis of single-mode fiber/photonic-crystal fiber splice," Microw. Opt. Technol. Lett. 40, 378-380 (2004).

T. Hirooka, Y. Hori, M. Nakazawa, "Gaussian and sech approximations of mode field profiles in photonic crystal fibers," IEEE Photon. Technol. Lett. 16, 1071-1073 (2004).

J. Shiefman, "Insertion loss comparison of collimators used to propagate light in and out of single-mode fibers," Opt. Eng. 43, 1927-1937 (2004).

2003 (4)

M. D. Nielsen, "Single-mode photonic crystal fiber with an effective area of 600 $\mu{\hbox{m}}2$ and low bending loss," Inst. Elect. Eng. 39, (2003).

N. A. Mortensen, M. D. Nielse, J. R. Folkenberg, A. Petersson, H. R. Simonsen, "Improved large-mode-area endlessly single-mode photonic crystal fibers," Opt. Lett. 28, (2003).

S. Kunathikom, B. L. Anderson, S. A. Colins, Jr."Design of delay elements in a binary optical true-time-delay device that uses a White cell," Appl. Opt. 42, (2003).

M. H. Frosz, K. Hougaard, S. B. Libori, J. Laegsgaard, A. Bjarklev, "Radial deformation losses in photonic crystal fibres," J. Opt. A, Pure Appl. Opt. 5, 268-271 (2003).

2001 (1)

T. P. White, R. C. McPhedran, C. M. de Sterke, "Confinement losses in microstructured optical fibers," Opt. Lett. 26, (2001).

1999 (1)

P. J. Bennett, T. M. Monro, D. J. Richardson, "Toward practical holey fiber technology: Fabrication, splicing, modeling, and characterization," Opt. Lett. 24, (1999).

1997 (1)

1984 (1)

L. Lundgren, K. Vilhelmsson, "Mode excitation in graded-index optical fibers," J. Lightw. Technol. LT-2, 559-563 (1984).

1942 (1)

J. White, "Long optical paths of large aperture," J. Opt. Soc. Amer. 32, 285-288 (1942).

Appl. Opt. (1)

S. Kunathikom, B. L. Anderson, S. A. Colins, Jr."Design of delay elements in a binary optical true-time-delay device that uses a White cell," Appl. Opt. 42, (2003).

IEEE Photon. Technol. Lett. (1)

T. Hirooka, Y. Hori, M. Nakazawa, "Gaussian and sech approximations of mode field profiles in photonic crystal fibers," IEEE Photon. Technol. Lett. 16, 1071-1073 (2004).

IEEE Photon. Technol. Lett. (1)

Y. Jiang, B. Howley, Z. Shi, O. Zhou, R. T. Chen, M. Y. Chen, G. Brost, C. Lee, "Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna," IEEE Photon. Technol. Lett. 17, 187-189 (2005).

Inst. Elect. Eng. (1)

M. D. Nielsen, "Single-mode photonic crystal fiber with an effective area of 600 $\mu{\hbox{m}}2$ and low bending loss," Inst. Elect. Eng. 39, (2003).

J. Lightw. Technol. (1)

L. Lundgren, K. Vilhelmsson, "Mode excitation in graded-index optical fibers," J. Lightw. Technol. LT-2, 559-563 (1984).

J. Opt. A, Pure Appl. Opt. (1)

M. H. Frosz, K. Hougaard, S. B. Libori, J. Laegsgaard, A. Bjarklev, "Radial deformation losses in photonic crystal fibres," J. Opt. A, Pure Appl. Opt. 5, 268-271 (2003).

J. Opt. Soc. Amer. (1)

J. White, "Long optical paths of large aperture," J. Opt. Soc. Amer. 32, 285-288 (1942).

Microw. Opt. Technol. Lett. (1)

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, "Loss analysis of single-mode fiber/photonic-crystal fiber splice," Microw. Opt. Technol. Lett. 40, 378-380 (2004).

Opt. Express (1)

M. D. Nielse, J. R. Folkenberg, N. A. Mortensen, A. Bjarklev, "Bandwidth comparison of photonic crystal fibers and conventional single-mode fibers," Opt. Express 12, (2004).

Opt. Lett. (1)

P. J. Bennett, T. M. Monro, D. J. Richardson, "Toward practical holey fiber technology: Fabrication, splicing, modeling, and characterization," Opt. Lett. 24, (1999).

Opt. Eng. (1)

J. Shiefman, "Insertion loss comparison of collimators used to propagate light in and out of single-mode fibers," Opt. Eng. 43, 1927-1937 (2004).

Opt. Express (1)

Opt. Fiber Technol. (1)

J. Zhou, K. Tajima, K. Nakajima, K. Kurokawa, C. Fukai, T. Matsui, I. Sankawa, "Progress on low loss photonic crystal fibers," Opt. Fiber Technol. 11, 101-110 (2005).

Opt. Lett. (4)

N. A. Mortensen, M. D. Nielse, J. R. Folkenberg, A. Petersson, H. R. Simonsen, "Improved large-mode-area endlessly single-mode photonic crystal fibers," Opt. Lett. 28, (2003).

T. A. Birks, J. C. Knight, P. S. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).

T. P. White, R. C. McPhedran, C. M. de Sterke, "Confinement losses in microstructured optical fibers," Opt. Lett. 26, (2001).

G.-J. Kong, J. Kim, H.-Y. Choi, J. E. Im, B.-H. Park, U.-C. Paek, B. H. Lee, "Lensed photonic crystal fiber obtained by use of an arc discharge," Opt. Lett. 31, 894-896 (2006).

Other (3)

S. A. Collins, Jr.A binary cell for producing optically controlled incremental time delays for phased array radars, ElectroScience Laboratory, The Ohio State Univ. (2003) Tech. Rep.

T. Weyraucha, M. A. Vorontsova, J. W. Gowens, IIT. G. Bifanob, "Fiber coupling with adaptive optics for free-space optical communication," Proc. SPIE Free-Space Laser Commun. Laser Imag. (2002).

A. Malinowski, A. Piper, J. H. V. Price, F. He, M. Ibsen, J. Nilsson, D. J. Richardson, "Short pulse high power fiber laser systems," Proc. Conf. Lasers Electro-Opt. (CLEO) (2005) pp. 1647-1649.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.