Abstract

An ultrafast all-optical differentiator generating the first- and the second-order temporal derivative of the intensity of optical signals is presented in this paper. Differentiation is obtained via an optical fiber that plays the role of an optical phase modulator, an optical bandpass filter and a photodetector. The operation of the proposed device is theoretically studied in order to highlight significant parameters that affect the performance of the differentiator, namely the filter transfer function, the power of the propagating waves and the fiber characteristics (length and nonlinear coefficient). The comparison between the numerically calculated derivatives and the theoretically expected ones is performed by estimating the correlation coefficient between them. According to the numerical analysis, high correlation coefficients can be achieved in certain operating regimes. The same device can be utilized in order to produce ultrawideband (UWB) impulse signals. Electrical monocycle or doublet pulses can be obtained at the output of the photodetector (PD) using the proper tunable optical filter. Experimental verification of the theoretically predicted and numerically calculated results is finally presented for high bit-rate signals.

© 2008 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. J. Azana, C. K. Madsen, K. Takiguchi, G. Cincotti, "Guest editorial optical signal proccessing," IEEE J. Lightw. Technol. 24, 2484-2486 (2006).
  2. N. Q. Ngo, L. N. Binh, X. Dai, "Optical dark-solitons generators and detectors," Elsevier Opt. Comm. 132, 389-402 (1996).
  3. R. Slavik, Y. Park, M. Kulishov, R. Morandotti, J. Azana, "Ultrafast all-optical differentiators," OSA Opt. Exp. 14, (2006).
  4. D. Porchino, W. Hirt, "Ultra-wideband radio technology: Potential and challenges ahead," IEEE Commun. Mag. 66-74 (2003).
  5. X. Chen, S. Kiaei, "Monocycle shapes for ultra wide-band system," Proc. IEEE Int. Symp. Circuits and Systems (2004) pp. 1307-1310.
  6. L. Stoica, S. Tiuraniemi, A. Rabbachin, I Oppermann, "An ultra-wideband TAG circuit transceiver architecture," Proc. Joint Ultra-Wideband Syst. Technol. Conf. (2004) pp. 258-262.
  7. D. Barras, F. Ellinger, H. Jackel, W. Hirt, "A robust front-end architecture for low-power UWB radio transceivers," IEEE Trans. Microw. Theory Tech. 54, 1713-1723 (2006).
  8. W.-P. Lin, J.-Y. Chen, "Implementation of a new ultrawide-band impulse system," IEEE Photon. Technol. Lett. 17, 2418-2420 (2005).
  9. F. Zeng, J. Yao, "An approach to ultrawideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823-825 (2006).
  10. F. Zeng, J. Yao, "Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator," IEEE Photon. Technol. Lett. 18, 2062-2064 (2006).
  11. J. Xu, X. Zhang, J. Dong, D. Liu, D. Huang, "High speed all optical differentiator based on semiconductor optical amplifier and optical filter," OSA Opt. Lett. 32, 1872-1874 (2007).
  12. J. Dong, X. Zhang, J. Xu, D. Huang, "All-optical UWB monocycle generation utilizing gain saturation of dark RZ signal in a SOA," OSA Opt. Lett. 32, 2158-2160 (2007).
  13. T. Kawanishi, T. Sakamoto, M. Izutsu, "Ultra-wide-band signal generation using high-speed optical frequency-shift-keying technique," Microw. Photon. 48-51 (2004).
  14. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  15. H. Venghaus, Wavelength Filters in Fibre Optics (Spinger-Verlag , 2006).
  16. M. Ghavami, L. B. Michael, R. Kohno, Ultra Wide-Band Signals and Systems in Communication Engineering (Wiley, 2004).

2007 (2)

J. Xu, X. Zhang, J. Dong, D. Liu, D. Huang, "High speed all optical differentiator based on semiconductor optical amplifier and optical filter," OSA Opt. Lett. 32, 1872-1874 (2007).

J. Dong, X. Zhang, J. Xu, D. Huang, "All-optical UWB monocycle generation utilizing gain saturation of dark RZ signal in a SOA," OSA Opt. Lett. 32, 2158-2160 (2007).

2006 (5)

J. Azana, C. K. Madsen, K. Takiguchi, G. Cincotti, "Guest editorial optical signal proccessing," IEEE J. Lightw. Technol. 24, 2484-2486 (2006).

R. Slavik, Y. Park, M. Kulishov, R. Morandotti, J. Azana, "Ultrafast all-optical differentiators," OSA Opt. Exp. 14, (2006).

D. Barras, F. Ellinger, H. Jackel, W. Hirt, "A robust front-end architecture for low-power UWB radio transceivers," IEEE Trans. Microw. Theory Tech. 54, 1713-1723 (2006).

F. Zeng, J. Yao, "An approach to ultrawideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823-825 (2006).

F. Zeng, J. Yao, "Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator," IEEE Photon. Technol. Lett. 18, 2062-2064 (2006).

2005 (1)

W.-P. Lin, J.-Y. Chen, "Implementation of a new ultrawide-band impulse system," IEEE Photon. Technol. Lett. 17, 2418-2420 (2005).

2004 (1)

T. Kawanishi, T. Sakamoto, M. Izutsu, "Ultra-wide-band signal generation using high-speed optical frequency-shift-keying technique," Microw. Photon. 48-51 (2004).

2003 (1)

D. Porchino, W. Hirt, "Ultra-wideband radio technology: Potential and challenges ahead," IEEE Commun. Mag. 66-74 (2003).

1996 (1)

N. Q. Ngo, L. N. Binh, X. Dai, "Optical dark-solitons generators and detectors," Elsevier Opt. Comm. 132, 389-402 (1996).

Elsevier Opt. Comm. (1)

N. Q. Ngo, L. N. Binh, X. Dai, "Optical dark-solitons generators and detectors," Elsevier Opt. Comm. 132, 389-402 (1996).

IEEE Commun. Mag. (1)

D. Porchino, W. Hirt, "Ultra-wideband radio technology: Potential and challenges ahead," IEEE Commun. Mag. 66-74 (2003).

IEEE J. Lightw. Technol. (1)

J. Azana, C. K. Madsen, K. Takiguchi, G. Cincotti, "Guest editorial optical signal proccessing," IEEE J. Lightw. Technol. 24, 2484-2486 (2006).

IEEE Photon. Technol. Lett. (3)

W.-P. Lin, J.-Y. Chen, "Implementation of a new ultrawide-band impulse system," IEEE Photon. Technol. Lett. 17, 2418-2420 (2005).

F. Zeng, J. Yao, "An approach to ultrawideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823-825 (2006).

F. Zeng, J. Yao, "Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator," IEEE Photon. Technol. Lett. 18, 2062-2064 (2006).

IEEE Trans. Microw. Theory Tech. (1)

D. Barras, F. Ellinger, H. Jackel, W. Hirt, "A robust front-end architecture for low-power UWB radio transceivers," IEEE Trans. Microw. Theory Tech. 54, 1713-1723 (2006).

Microw. Photon. (1)

T. Kawanishi, T. Sakamoto, M. Izutsu, "Ultra-wide-band signal generation using high-speed optical frequency-shift-keying technique," Microw. Photon. 48-51 (2004).

OSA Opt. Lett. (1)

J. Dong, X. Zhang, J. Xu, D. Huang, "All-optical UWB monocycle generation utilizing gain saturation of dark RZ signal in a SOA," OSA Opt. Lett. 32, 2158-2160 (2007).

OSA Opt. Lett. (1)

J. Xu, X. Zhang, J. Dong, D. Liu, D. Huang, "High speed all optical differentiator based on semiconductor optical amplifier and optical filter," OSA Opt. Lett. 32, 1872-1874 (2007).

OSA Opt. Exp. (1)

R. Slavik, Y. Park, M. Kulishov, R. Morandotti, J. Azana, "Ultrafast all-optical differentiators," OSA Opt. Exp. 14, (2006).

Other (5)

X. Chen, S. Kiaei, "Monocycle shapes for ultra wide-band system," Proc. IEEE Int. Symp. Circuits and Systems (2004) pp. 1307-1310.

L. Stoica, S. Tiuraniemi, A. Rabbachin, I Oppermann, "An ultra-wideband TAG circuit transceiver architecture," Proc. Joint Ultra-Wideband Syst. Technol. Conf. (2004) pp. 258-262.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

H. Venghaus, Wavelength Filters in Fibre Optics (Spinger-Verlag , 2006).

M. Ghavami, L. B. Michael, R. Kohno, Ultra Wide-Band Signals and Systems in Communication Engineering (Wiley, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.