Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 26,
  • Issue 18,
  • pp. 3210-3215
  • (2008)

Reduction of Parametric Amplified Noise in Nonlinear Fiber Channels by Use of Wiener Filtering

Not Accessible

Your library or personal account may give you access

Abstract

As a parametric amplified noise, nonlinear phase noise limits the channel capacity in multispan fiber-optics transmissions. In this paper, the reduction of nonlinear phase noise by use of Wiener filtering is studied. Extracting signal from time-domain concepts, parametric amplified noise covering signal spectrum in frequency domain can be suppressed considerably. Timing jitter and ghost pulses due to intrachannel nonlinearities can also be compensated. Nonparametric Wiener filtering is used at the end of six configurations of dispersion compensation (DC) transmission lines: pre- and postlumped DC, distributed DC without optical phase conjugation (OPC), dispersion inversion (DI) about midlink OPC with, respectively, one-for-multispan, single type span and alternate type span on each side of OPC. It is found that single-DI and alternate-DI schemes have higher input power capacity than one-for-multi-DI scheme. Further reductions in the nonlinear phase noise accumulation for all these DC maps are obtained with Wiener filtering, and higher absolute dispersion can decrease signal fluctuation due to nonlinear phase noise, as well.

© 2008 IEEE

PDF Article
More Like This
Noise and speckle reduction in synthetic aperture radar imagery by nonparametric Wiener filtering

Robert S. Caprari, Alvin S. Goh, and Emily K. Moffatt
Appl. Opt. 39(35) 6633-6640 (2000)

Fiber nonlinearity mitigation of WDM-PDM QPSK/16-QAM signals using fiber-optic parametric amplifiers based multiple optical phase conjugations

Hao Hu, Robert M. Jopson, Alan H. Gnauck, Sebastian Randel, and S. Chandrasekhar
Opt. Express 25(3) 1618-1628 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.