Abstract

A novel optical spatial quantized analog-to-digital converter (ADC) is presented and the performance enhancements through employing this architecture are analyzed theoretically. A high-speed low-jitter ADC sampling clock is provided by a mode-locked laser. A high sampling rate is maintained by avoiding any speed-limiting conversion from optical to electrical domain in an all-optical quantization technique. A high quantization bandwidth is achieved by employing the all-optical quantization technique, benefiting from the high bandwidth characteristics of optical modulation. A high ADC resolution is obtained by using a single-channel quantization configuration and detecting a single image at each sampling step. A high power efficiency is achieved by extracting some portions of the required power from the analog electrical signal and optical sampling clock, directly. Various ADC-resolution limiting factors including the ambiguity of photodetectors, jitter of the optical sampling-clock, the limited beam deflector bandwidth, dispersion, phase modulator nonlinearity/mismatch, noise, and crosstalk have been identified and the contribution of each effect has been discussed.

© 2008 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription