Abstract

In this paper, high-speed optical ribbon couplers for card-to-backplane interconnect applications are presented. The ribbon couplers are based on evanescent coupling between flexible multimode waveguide arrays. A soft lithographic technique is utilized to fabricate the ribbons. A flexible nonterminating optical data bus has been developed. Using BeamPROP software, we simulated the evanescent light coupling between two closely spaced ribbon waveguides to study the effects of waveguides separation, interaction length, and misalignment on coupling efficiency. Further experimental analysis and tests have been performed to quantify these effects. To investigate data transmission performance, a 12-channel optical interconnect link has been assembled. Experimental results demonstrated successful evanescent coupling; facilitating auto alignment coupling between card and backplane ribbon waveguides at data speeds as high as 10 Gb/s per channel. The evident high-speed interconnect performance and rapid ribbon prototyping approach can result in overall lower cost coupler fabrication for prospective optical interconnect applications.

© 2008 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. International SEMATECH, Semiconductor Industry Association“The National Technology Roadmap for Semiconductors (ITRS)—Technology,” (2003).
  2. K. Grundy, H. Liaw, G. Otonari, M. Resso, "Designing scalable 10 G backplane interconnect systems utilizing advanced verification methodologies," Proc. DesignCon (2006).
  3. D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Topics Quantum. Electron. 6, 1312-1317 (2000).
  4. G. Kim, R. T. Chen, "Three-dimensionally interconnected bidirectional optical backplane," IEEE Photon. Technol. Lett. 11, 880-882 (1998).
  5. H. Kogelnik, "High-capacity optical communication," IEEE J. Sel. Topics Quantum. Electron. 6, 1279-1286 (2000).
  6. A. L. Glebov, M. G. Lee, K. Yokouchi, "Integration technologies for pluggable backplane optical interconnect systems," Opt. Eng. 46, 015403-1-015403-10 (2007).
  7. J. J. Yang, A. Flores, M. R. Wang, "Array waveguide evanescent ribbon for card-to-Backplane optical interconnects," Opt. Lett. 32, 14-16 (2007).
  8. J. Yang, Optical waveguide evanescent ribbon coupler U.S. Patent 7142748 (2006).
  9. A. Yariv, "Coupled-Mode theory for guided-wave optics," IEEE J. Quantum Electron. 9, 919-933 (1973).
  10. W. P. Huang, C. L. Xu, "Simulation of three-dimensional optical waveguides by a full-vector beam propagation," IEEE J. Quantum Electron. 29, 2639-2649 (1993).
  11. Y. P. Chiou, H. C. Chang, "Analysis of optical waveguide discontinuities using the Pade approximants," IEEE Photon. Tech. Lett. 9, 964-966 (1997).
  12. J. T. Gallo, J. L. Hohman, B. Ellerbusch, R. J. Furmanak, L. M. Abbott, D. M. Graham, C. A. Schuetz, B. L. Booth, Active and Passive Optical Components for WDM Communication (, 2001) pp. 292-299.
  13. R. R. Krchnavek, R. D. Chamberlain, T. Barry, V. Malhotra, Z. Dittia, "Optical interconnect design for a manufacturable multicomputer," Proc. 2nd Int. Conf. Massively Parallel Process. Using Opt. Interconnect. (1995) pp. 279-288.
  14. Y. Xia, G. Whitesides, "Soft lithography," Angew Chem. Int. Ed. 37, 550-575 (1998).

2007 (2)

A. L. Glebov, M. G. Lee, K. Yokouchi, "Integration technologies for pluggable backplane optical interconnect systems," Opt. Eng. 46, 015403-1-015403-10 (2007).

J. J. Yang, A. Flores, M. R. Wang, "Array waveguide evanescent ribbon for card-to-Backplane optical interconnects," Opt. Lett. 32, 14-16 (2007).

2000 (2)

D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Topics Quantum. Electron. 6, 1312-1317 (2000).

H. Kogelnik, "High-capacity optical communication," IEEE J. Sel. Topics Quantum. Electron. 6, 1279-1286 (2000).

1998 (2)

Y. Xia, G. Whitesides, "Soft lithography," Angew Chem. Int. Ed. 37, 550-575 (1998).

G. Kim, R. T. Chen, "Three-dimensionally interconnected bidirectional optical backplane," IEEE Photon. Technol. Lett. 11, 880-882 (1998).

1997 (1)

Y. P. Chiou, H. C. Chang, "Analysis of optical waveguide discontinuities using the Pade approximants," IEEE Photon. Tech. Lett. 9, 964-966 (1997).

1993 (1)

W. P. Huang, C. L. Xu, "Simulation of three-dimensional optical waveguides by a full-vector beam propagation," IEEE J. Quantum Electron. 29, 2639-2649 (1993).

1973 (1)

A. Yariv, "Coupled-Mode theory for guided-wave optics," IEEE J. Quantum Electron. 9, 919-933 (1973).

Angew Chem. Int. Ed. (1)

Y. Xia, G. Whitesides, "Soft lithography," Angew Chem. Int. Ed. 37, 550-575 (1998).

IEEE J. Quantum Electron. (1)

W. P. Huang, C. L. Xu, "Simulation of three-dimensional optical waveguides by a full-vector beam propagation," IEEE J. Quantum Electron. 29, 2639-2649 (1993).

IEEE J. Quantum Electron. (1)

A. Yariv, "Coupled-Mode theory for guided-wave optics," IEEE J. Quantum Electron. 9, 919-933 (1973).

IEEE J. Sel. Topics Quantum. Electron. (2)

D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Topics Quantum. Electron. 6, 1312-1317 (2000).

H. Kogelnik, "High-capacity optical communication," IEEE J. Sel. Topics Quantum. Electron. 6, 1279-1286 (2000).

IEEE Photon. Tech. Lett. (1)

Y. P. Chiou, H. C. Chang, "Analysis of optical waveguide discontinuities using the Pade approximants," IEEE Photon. Tech. Lett. 9, 964-966 (1997).

IEEE Photon. Technol. Lett. (1)

G. Kim, R. T. Chen, "Three-dimensionally interconnected bidirectional optical backplane," IEEE Photon. Technol. Lett. 11, 880-882 (1998).

Opt. Eng. (1)

A. L. Glebov, M. G. Lee, K. Yokouchi, "Integration technologies for pluggable backplane optical interconnect systems," Opt. Eng. 46, 015403-1-015403-10 (2007).

Opt. Lett. (1)

Other (5)

J. Yang, Optical waveguide evanescent ribbon coupler U.S. Patent 7142748 (2006).

International SEMATECH, Semiconductor Industry Association“The National Technology Roadmap for Semiconductors (ITRS)—Technology,” (2003).

K. Grundy, H. Liaw, G. Otonari, M. Resso, "Designing scalable 10 G backplane interconnect systems utilizing advanced verification methodologies," Proc. DesignCon (2006).

J. T. Gallo, J. L. Hohman, B. Ellerbusch, R. J. Furmanak, L. M. Abbott, D. M. Graham, C. A. Schuetz, B. L. Booth, Active and Passive Optical Components for WDM Communication (, 2001) pp. 292-299.

R. R. Krchnavek, R. D. Chamberlain, T. Barry, V. Malhotra, Z. Dittia, "Optical interconnect design for a manufacturable multicomputer," Proc. 2nd Int. Conf. Massively Parallel Process. Using Opt. Interconnect. (1995) pp. 279-288.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.