Abstract

In this paper, high-speed optical ribbon couplers for card-to-backplane interconnect applications are presented. The ribbon couplers are based on evanescent coupling between flexible multimode waveguide arrays. A soft lithographic technique is utilized to fabricate the ribbons. A flexible nonterminating optical data bus has been developed. Using BeamPROP software, we simulated the evanescent light coupling between two closely spaced ribbon waveguides to study the effects of waveguides separation, interaction length, and misalignment on coupling efficiency. Further experimental analysis and tests have been performed to quantify these effects. To investigate data transmission performance, a 12-channel optical interconnect link has been assembled. Experimental results demonstrated successful evanescent coupling; facilitating auto alignment coupling between card and backplane ribbon waveguides at data speeds as high as 10 Gb/s per channel. The evident high-speed interconnect performance and rapid ribbon prototyping approach can result in overall lower cost coupler fabrication for prospective optical interconnect applications.

© 2008 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription