Abstract

There is a trend towards miniaturization of silicon photonic circuits due to superior performance and small cost. Design rules that must be imposed on the geometry of optical waveguides to make them behave as polarization-independent and single-mode devices are well known for waveguides with relatively large cross sections and for some small cross-sectional rib waveguides with vertical sidewalls and an air top cladding. The influence of the top oxide cover on waveguide birefringence was analyzed recently, but only for relatively large cross-sectional waveguides. This paper reports simulations for both single-mode and polarization-independent behavior for small cross-sectional waveguides with variable rib width, etch depth, top oxide cover thickness, and sidewall angle. The results show that the stress-induced effects must be taken into account to satisfy both requirements. Design rules to maintain birefringence-free operation and to satisfy single-mode behavior for small rib silicon-on-insulator (SOI) waveguides are presented.

© 2008 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription