Abstract

We describe a new full-vector finite difference discretization, based upon the transverse magnetic field components, for calculating the electromagnetic modes of optical waveguides with transverse, nondiagonal anisotropy. Unlike earlier finite difference approaches, our method allows for the material axes to be arbitrarily oriented, as long as one of the principal axes coincides with the direction of propagation. We demonstrate the capabilities of the method by computing the circularly-polarized modes of a magnetooptical waveguide and the modes of an off-axis poled anisotropic polymer waveguide.

© 2008 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription