Abstract

Doped with PbSe nanocrystals of different sizes, a multiquantum-dot-doped fiber amplifier (MQDFA) is proposed. Performance of the MQDFA is simulated by solving light-propagation equations and rate equations for a three-level system, and by applying superposed emission-absorption cross sections of the quantum dots (QDs). Pumped with 980 nm, this proposed MQDFA has characteristics of broader band, flatter gain, and lower noise than those of the erbium-doped fiber amplifiers at present. There is evidence to show that two factors, i.e., the equivalent Stokes shifts and the full wave at half maximum of the superposed spectra, dominate the performances of the MQDFA. Also, the equivalent Stokes shift and the FWHM are tunable by adopting the QDs in different sizes and choosing the doped number available. It is expected that such a MQDFA may be able to cover the all waveband in telecommunications if it is optimized on the doped number, sizes, and doped concentrations of the QDs.

© 2008 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. S. W. Harun, N. Tamchek, P. Poopalan, H. Ahmad, "Double-pass $L$-band EDFA with enhanced noise figure characteristics," IEEE Photon. Technol. Lett. 15, 1055-1057 (2003).
  2. Y. B. Lu, P. L. Chu, A. Alphones, P. Shum, "A 105-nm ultrawide-band gain-flattened amplifier combining $C$- and $L$-band dual-core EDFAs in a parallel configuration," IEEE Photon. Technol. Lett. 16, 1640-1642 (2004).
  3. T. Sakamoto, S. Aozasa, M. Yamada, "High-gain hybrid amplifier consisting of cascaded fluoride-based TDFA and silica-based EDFA in 1458โ€“1540 nm wavelength region," Electron. Lett. 39, 597-599 (2003).
  4. J. B. Rosolem, A. A. Juriollo, R. Arradi, "$S-C-L$ triple-band double-pass EDFA with an embedded DCF module for CWDM applications," J. Lightw. Technol. 24, 3691-3697 (2006).
  5. M. Brumer, M. Sirota, A. Kigel, "Nanocrystals of PbSe core, PbSe/PbS, and PbSe/PbSe$_{\rm x}{\hbox {S}}_{1-{\rm x}}$ core/shell as saturable absorbers in passively Q-switched near-infrared lasers," Appl. Opt. 45, (2006).
  6. I. Chung, J. B. Witkoskie, J. Cao, "Description of the fluorescence intensity time trace of collections of CdSe nanocrystal quantum dots based on single quantum dot fluorescence blinking statistics," Phys. Rev. E 73, 011106-011112 (2006).
  7. O. Qasaimeh, "An analytical model for quantum dot semiconductor optical amplifiers," Opt. Commun. 222, 277-287 (2003).
  8. A. V. Uskov, E. P. O'Reilly, M. Laemmlin, "On gain saturation in quantum dot semiconductor optical amplifiers," Opt. Commun. 248, 211-219 (2005).
  9. Z. Bakonyi, H. Su, G. Onishchukov, "High-gain quantum-dot semiconductor optical amplifier for 1300 nm," IEEE J. Quant. Electron. 39, 1409-1414 (2003).
  10. E. H. Sargent, "Infrared quantum dots," Adv. Mater. 17, 515-522 (2005).
  11. M. Sugawara, N. Hatori, M. Ishida, "Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: Temperature-insensitive 10 Gb/s directly modulated lasers and 40 Gb/s signal-regenerative amplifiers," J. Phys. D, Appl. Phys. 38, 2126-2134 (2005).
  12. C. B. Murray, S. Sun, W. Gaschler, "Colloidal synthesis of nanocrystals and nanocrystal superlattices," IBM J. Res. Dev. 45, 47-56 (2001) http://www.evidenttech.com.
  13. F. Wise, "Quantum dots call shots," SPIE OE Mag. 24-27 (2002).
  14. C. Cheng, H. Zhang, "Characteristics of bandwidth, gain and noise of a PbSe quantum dot-doped fiber amplifier," Opt. Commun. 277, 372-378 (2007).
  15. C. Cheng, M. Xiao, "Optimization of a dual pumped L-band erbium-doped fiber amplifier by genetic algorithm," IEEE J. Lightw. Technol. 24, 3824-3829 (2006).
  16. Y. L. Jin, Q. Y. Dou, Y. G. Liu, "Gain-clamped dual-stage L-band EDFA by using backward C-band ASE," Opt. Commun. 266, 390-392 (2006).
  17. W. W. Yu, L. Qu, W. Guo, X. G. Peng, "Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals," Chem. Master. 15, 2854-2860 (2003).
  18. B. L. Wehrenberg, C. Wang, P. G. Sionnest, "Interband and intraband optical studies of PbSe colloidal quantum dots," J. Phys. Chem. B 106, 10634-10640 (2002).
  19. J. M. Harbold, H. Du, T. D. Krauss, K. S. Cho, "Time-resolved intraband relaxation of strongly confined electrons and holes in colloidal PbSe nanocrystals," Phys. Rev. B 72, 195312-195316 (2005).
  20. H. Du, C. Chen, R. Krishnan, "Optical properties of colloidal PbSe nanocrystals," Nano Lett. 2, 1321-1324 (2002).
  21. M. H. Lee, W. J. Chung, S. K. Park, "Structural and optical characterizations of multi-layered and multi-stacked PbSe quantum dots," Nanotechnol. 16, 1148-1152 (2005).
  22. C. R. Giles, E. Desurvire, "Modeling Erbium-doped fiber amplifiers," J. Lightw. Technol. 9, 271-283 (1991).
  23. L. Kazovsky, S. Benedetto, A. E. Willner, Optical Fiber Communications Systems (Artech House, 1996).
  24. J. J. Peterson, T. D. Krauss, "Photobrightening and photodarkening in PbS quantum dots," Phys. Chem. Chem. Phys. 8, 3851-3856 (2006).

2007

C. Cheng, H. Zhang, "Characteristics of bandwidth, gain and noise of a PbSe quantum dot-doped fiber amplifier," Opt. Commun. 277, 372-378 (2007).

2006

C. Cheng, M. Xiao, "Optimization of a dual pumped L-band erbium-doped fiber amplifier by genetic algorithm," IEEE J. Lightw. Technol. 24, 3824-3829 (2006).

Y. L. Jin, Q. Y. Dou, Y. G. Liu, "Gain-clamped dual-stage L-band EDFA by using backward C-band ASE," Opt. Commun. 266, 390-392 (2006).

J. B. Rosolem, A. A. Juriollo, R. Arradi, "$S-C-L$ triple-band double-pass EDFA with an embedded DCF module for CWDM applications," J. Lightw. Technol. 24, 3691-3697 (2006).

M. Brumer, M. Sirota, A. Kigel, "Nanocrystals of PbSe core, PbSe/PbS, and PbSe/PbSe$_{\rm x}{\hbox {S}}_{1-{\rm x}}$ core/shell as saturable absorbers in passively Q-switched near-infrared lasers," Appl. Opt. 45, (2006).

I. Chung, J. B. Witkoskie, J. Cao, "Description of the fluorescence intensity time trace of collections of CdSe nanocrystal quantum dots based on single quantum dot fluorescence blinking statistics," Phys. Rev. E 73, 011106-011112 (2006).

J. J. Peterson, T. D. Krauss, "Photobrightening and photodarkening in PbS quantum dots," Phys. Chem. Chem. Phys. 8, 3851-3856 (2006).

2005

J. M. Harbold, H. Du, T. D. Krauss, K. S. Cho, "Time-resolved intraband relaxation of strongly confined electrons and holes in colloidal PbSe nanocrystals," Phys. Rev. B 72, 195312-195316 (2005).

M. H. Lee, W. J. Chung, S. K. Park, "Structural and optical characterizations of multi-layered and multi-stacked PbSe quantum dots," Nanotechnol. 16, 1148-1152 (2005).

A. V. Uskov, E. P. O'Reilly, M. Laemmlin, "On gain saturation in quantum dot semiconductor optical amplifiers," Opt. Commun. 248, 211-219 (2005).

E. H. Sargent, "Infrared quantum dots," Adv. Mater. 17, 515-522 (2005).

M. Sugawara, N. Hatori, M. Ishida, "Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: Temperature-insensitive 10 Gb/s directly modulated lasers and 40 Gb/s signal-regenerative amplifiers," J. Phys. D, Appl. Phys. 38, 2126-2134 (2005).

2004

Y. B. Lu, P. L. Chu, A. Alphones, P. Shum, "A 105-nm ultrawide-band gain-flattened amplifier combining $C$- and $L$-band dual-core EDFAs in a parallel configuration," IEEE Photon. Technol. Lett. 16, 1640-1642 (2004).

2003

T. Sakamoto, S. Aozasa, M. Yamada, "High-gain hybrid amplifier consisting of cascaded fluoride-based TDFA and silica-based EDFA in 1458โ€“1540 nm wavelength region," Electron. Lett. 39, 597-599 (2003).

Z. Bakonyi, H. Su, G. Onishchukov, "High-gain quantum-dot semiconductor optical amplifier for 1300 nm," IEEE J. Quant. Electron. 39, 1409-1414 (2003).

O. Qasaimeh, "An analytical model for quantum dot semiconductor optical amplifiers," Opt. Commun. 222, 277-287 (2003).

S. W. Harun, N. Tamchek, P. Poopalan, H. Ahmad, "Double-pass $L$-band EDFA with enhanced noise figure characteristics," IEEE Photon. Technol. Lett. 15, 1055-1057 (2003).

W. W. Yu, L. Qu, W. Guo, X. G. Peng, "Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals," Chem. Master. 15, 2854-2860 (2003).

2002

B. L. Wehrenberg, C. Wang, P. G. Sionnest, "Interband and intraband optical studies of PbSe colloidal quantum dots," J. Phys. Chem. B 106, 10634-10640 (2002).

F. Wise, "Quantum dots call shots," SPIE OE Mag. 24-27 (2002).

H. Du, C. Chen, R. Krishnan, "Optical properties of colloidal PbSe nanocrystals," Nano Lett. 2, 1321-1324 (2002).

2001

C. B. Murray, S. Sun, W. Gaschler, "Colloidal synthesis of nanocrystals and nanocrystal superlattices," IBM J. Res. Dev. 45, 47-56 (2001) http://www.evidenttech.com.

1991

C. R. Giles, E. Desurvire, "Modeling Erbium-doped fiber amplifiers," J. Lightw. Technol. 9, 271-283 (1991).

Adv. Mater.

E. H. Sargent, "Infrared quantum dots," Adv. Mater. 17, 515-522 (2005).

Appl. Opt.

M. Brumer, M. Sirota, A. Kigel, "Nanocrystals of PbSe core, PbSe/PbS, and PbSe/PbSe$_{\rm x}{\hbox {S}}_{1-{\rm x}}$ core/shell as saturable absorbers in passively Q-switched near-infrared lasers," Appl. Opt. 45, (2006).

Chem. Master.

W. W. Yu, L. Qu, W. Guo, X. G. Peng, "Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals," Chem. Master. 15, 2854-2860 (2003).

Electron. Lett.

T. Sakamoto, S. Aozasa, M. Yamada, "High-gain hybrid amplifier consisting of cascaded fluoride-based TDFA and silica-based EDFA in 1458โ€“1540 nm wavelength region," Electron. Lett. 39, 597-599 (2003).

IBM J. Res. Dev.

C. B. Murray, S. Sun, W. Gaschler, "Colloidal synthesis of nanocrystals and nanocrystal superlattices," IBM J. Res. Dev. 45, 47-56 (2001) http://www.evidenttech.com.

IEEE Photon. Technol. Lett.

S. W. Harun, N. Tamchek, P. Poopalan, H. Ahmad, "Double-pass $L$-band EDFA with enhanced noise figure characteristics," IEEE Photon. Technol. Lett. 15, 1055-1057 (2003).

IEEE J. Lightw. Technol.

C. Cheng, M. Xiao, "Optimization of a dual pumped L-band erbium-doped fiber amplifier by genetic algorithm," IEEE J. Lightw. Technol. 24, 3824-3829 (2006).

IEEE J. Quant. Electron.

Z. Bakonyi, H. Su, G. Onishchukov, "High-gain quantum-dot semiconductor optical amplifier for 1300 nm," IEEE J. Quant. Electron. 39, 1409-1414 (2003).

IEEE Photon. Technol. Lett.

Y. B. Lu, P. L. Chu, A. Alphones, P. Shum, "A 105-nm ultrawide-band gain-flattened amplifier combining $C$- and $L$-band dual-core EDFAs in a parallel configuration," IEEE Photon. Technol. Lett. 16, 1640-1642 (2004).

J. Lightw. Technol.

J. B. Rosolem, A. A. Juriollo, R. Arradi, "$S-C-L$ triple-band double-pass EDFA with an embedded DCF module for CWDM applications," J. Lightw. Technol. 24, 3691-3697 (2006).

C. R. Giles, E. Desurvire, "Modeling Erbium-doped fiber amplifiers," J. Lightw. Technol. 9, 271-283 (1991).

J. Phys. Chem. B

B. L. Wehrenberg, C. Wang, P. G. Sionnest, "Interband and intraband optical studies of PbSe colloidal quantum dots," J. Phys. Chem. B 106, 10634-10640 (2002).

J. Phys. D, Appl. Phys.

M. Sugawara, N. Hatori, M. Ishida, "Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: Temperature-insensitive 10 Gb/s directly modulated lasers and 40 Gb/s signal-regenerative amplifiers," J. Phys. D, Appl. Phys. 38, 2126-2134 (2005).

Nano Lett.

H. Du, C. Chen, R. Krishnan, "Optical properties of colloidal PbSe nanocrystals," Nano Lett. 2, 1321-1324 (2002).

Nanotechnol.

M. H. Lee, W. J. Chung, S. K. Park, "Structural and optical characterizations of multi-layered and multi-stacked PbSe quantum dots," Nanotechnol. 16, 1148-1152 (2005).

Opt. Commun.

C. Cheng, H. Zhang, "Characteristics of bandwidth, gain and noise of a PbSe quantum dot-doped fiber amplifier," Opt. Commun. 277, 372-378 (2007).

Y. L. Jin, Q. Y. Dou, Y. G. Liu, "Gain-clamped dual-stage L-band EDFA by using backward C-band ASE," Opt. Commun. 266, 390-392 (2006).

O. Qasaimeh, "An analytical model for quantum dot semiconductor optical amplifiers," Opt. Commun. 222, 277-287 (2003).

A. V. Uskov, E. P. O'Reilly, M. Laemmlin, "On gain saturation in quantum dot semiconductor optical amplifiers," Opt. Commun. 248, 211-219 (2005).

Phys. Rev. B

J. M. Harbold, H. Du, T. D. Krauss, K. S. Cho, "Time-resolved intraband relaxation of strongly confined electrons and holes in colloidal PbSe nanocrystals," Phys. Rev. B 72, 195312-195316 (2005).

Phys. Chem. Chem. Phys.

J. J. Peterson, T. D. Krauss, "Photobrightening and photodarkening in PbS quantum dots," Phys. Chem. Chem. Phys. 8, 3851-3856 (2006).

Phys. Rev. E

I. Chung, J. B. Witkoskie, J. Cao, "Description of the fluorescence intensity time trace of collections of CdSe nanocrystal quantum dots based on single quantum dot fluorescence blinking statistics," Phys. Rev. E 73, 011106-011112 (2006).

SPIE OE Mag.

F. Wise, "Quantum dots call shots," SPIE OE Mag. 24-27 (2002).

Other

L. Kazovsky, S. Benedetto, A. E. Willner, Optical Fiber Communications Systems (Artech House, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.