Abstract

The purpose of this paper is to develop high-order vectorial finite-element methods to characterize the bending loss in optical waveguides. In order to avoid the use of approximate models based on equivalent refraction index or conformal mapping, the fully vectorial Maxwell system is expressed in a general orthogonal coordinate system. Boundary reflections are circumvented by a proper adaptation of the perfectly matched layer technique. Application to bent rib optical waveguides in cylindrical coordinates and bent circular fiber in toroidal coordinates is presented. In the latter case, a suitable family of quadrangular finite elements has been developed and was shown to give interesting results, both in that situation and in the Cartesian coordinate situation.

© 2007 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription