Abstract

In this paper, we present the decaying behavior of a fourth-order temporal soliton, which propagates through optical fibers with various dispersion profiles, using the symmetrized split-step Fourier method. We use these behaviors to design two types of 1x 4 and on 1 x 5 channel wavelength converters using three different types of dispersion profiles along the optical fibers. We also demonstrate that under certain conditions one can use one of the 1 x 4 converters for a pulse train with duration of 30 ps.

© 2007 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. G. P. Agrawal, Fiber Optic Communication Systems (Wiley, 2001).
  2. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  3. Y. D. Wu, "Nonlinear all-optical switching device by using the spatial soliton collision," Fiber Integr. Opt. 23, 387-404 (2004).
  4. J. E. Sharping, M. Fiorentino, P. Kumar, R. S. Windeler, "All-optical switching based on cross-phase modulation in microstructure fiber," IEEE Photon. Technol. Lett. 14, 77-79 (2002).
  5. R. A. Vicencio, M. I. Molina, Y. S. Kivshar, "Switching of discrete optical solitons in engineered waveguide arrays," Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 70, 026โ€‰602 (2004).
  6. Y. D. Wu, "New all optical wavelength auto-router based on spatial soliton," Opt. Express 12, 4172-4177 (2004).
  7. F. Garzia, C. Sibilia, "New phase modulation technique based on spatial soliton switching," J. Lightw. Technol. 19, 1036-1050 (2001).
  8. K. S. Lee, M. C. Gross, S. E. Ralph, J. A. Buck, "Wavelength conversion using N=2 soliton decay and recovery in fiber, initiated by dispersion steps," IEEE Photon. Technol. Lett. 16, 554-556 (2004).
  9. K. S. Lee, J. A. Buck, "Wavelength conversion through higher-order soliton splitting initiated by localized channel perturbations," J. Opt. Soc. Amer. B, Opt. Phys. 20, 514-519 (2003).
  10. E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov, V. N. Serkin, "Decay of optical solitons," JETP Lett. 42, 87-91 (1985).
  11. K. Ohkuma, Y. H. Ichikawa, Y. Abe, "Soliton propagation along optical fibers," Opt. Lett. 12, 516-518 (1987).
  12. K. Tai, A. Hasegawa, "Fission of optical solitons induced by stimulated Raman effect," Opt. Lett. 13, 392-394 (1988).
  13. P. K. Wai, C. R. Menyuk, Y. C. Lee, H. H. Chen, "Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers," Opt. Lett. 11, 464-466 (1986).
  14. S. R. Clarke, R. H. J. Grimshaw, B. A. Malomed, "Soliton formation from a pulse passing the zero dispersion point in a nonlinear Schrodinger equation," Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 61, 5794-5801 (2000).
  15. A. K. Atieh, P. Myslinski, J. Chrostowski, P. Galko, "Measuring the Raman time constant (TR) for soliton pulses in standard single-mode fiber," J. Lightw. Technol. 17, 216-221 (1999).
  16. M. Lax, J. H. Battech, G. P. Agrawal, "Channeling of intense electromagnetic beams," J. Appl. Phys. 52, 109-125 (1981).

2004 (4)

Y. D. Wu, "Nonlinear all-optical switching device by using the spatial soliton collision," Fiber Integr. Opt. 23, 387-404 (2004).

R. A. Vicencio, M. I. Molina, Y. S. Kivshar, "Switching of discrete optical solitons in engineered waveguide arrays," Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 70, 026โ€‰602 (2004).

Y. D. Wu, "New all optical wavelength auto-router based on spatial soliton," Opt. Express 12, 4172-4177 (2004).

K. S. Lee, M. C. Gross, S. E. Ralph, J. A. Buck, "Wavelength conversion using N=2 soliton decay and recovery in fiber, initiated by dispersion steps," IEEE Photon. Technol. Lett. 16, 554-556 (2004).

2003 (1)

K. S. Lee, J. A. Buck, "Wavelength conversion through higher-order soliton splitting initiated by localized channel perturbations," J. Opt. Soc. Amer. B, Opt. Phys. 20, 514-519 (2003).

2002 (1)

J. E. Sharping, M. Fiorentino, P. Kumar, R. S. Windeler, "All-optical switching based on cross-phase modulation in microstructure fiber," IEEE Photon. Technol. Lett. 14, 77-79 (2002).

2001 (1)

F. Garzia, C. Sibilia, "New phase modulation technique based on spatial soliton switching," J. Lightw. Technol. 19, 1036-1050 (2001).

2000 (1)

S. R. Clarke, R. H. J. Grimshaw, B. A. Malomed, "Soliton formation from a pulse passing the zero dispersion point in a nonlinear Schrodinger equation," Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 61, 5794-5801 (2000).

1999 (1)

A. K. Atieh, P. Myslinski, J. Chrostowski, P. Galko, "Measuring the Raman time constant (TR) for soliton pulses in standard single-mode fiber," J. Lightw. Technol. 17, 216-221 (1999).

1988 (1)

1987 (1)

1986 (1)

1985 (1)

E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov, V. N. Serkin, "Decay of optical solitons," JETP Lett. 42, 87-91 (1985).

1981 (1)

M. Lax, J. H. Battech, G. P. Agrawal, "Channeling of intense electromagnetic beams," J. Appl. Phys. 52, 109-125 (1981).

Fiber Integr. Opt. (1)

Y. D. Wu, "Nonlinear all-optical switching device by using the spatial soliton collision," Fiber Integr. Opt. 23, 387-404 (2004).

IEEE Photon. Technol. Lett. (2)

J. E. Sharping, M. Fiorentino, P. Kumar, R. S. Windeler, "All-optical switching based on cross-phase modulation in microstructure fiber," IEEE Photon. Technol. Lett. 14, 77-79 (2002).

K. S. Lee, M. C. Gross, S. E. Ralph, J. A. Buck, "Wavelength conversion using N=2 soliton decay and recovery in fiber, initiated by dispersion steps," IEEE Photon. Technol. Lett. 16, 554-556 (2004).

J. Appl. Phys. (1)

M. Lax, J. H. Battech, G. P. Agrawal, "Channeling of intense electromagnetic beams," J. Appl. Phys. 52, 109-125 (1981).

J. Lightw. Technol. (2)

A. K. Atieh, P. Myslinski, J. Chrostowski, P. Galko, "Measuring the Raman time constant (TR) for soliton pulses in standard single-mode fiber," J. Lightw. Technol. 17, 216-221 (1999).

F. Garzia, C. Sibilia, "New phase modulation technique based on spatial soliton switching," J. Lightw. Technol. 19, 1036-1050 (2001).

J. Opt. Soc. Amer. B, Opt. Phys. (1)

K. S. Lee, J. A. Buck, "Wavelength conversion through higher-order soliton splitting initiated by localized channel perturbations," J. Opt. Soc. Amer. B, Opt. Phys. 20, 514-519 (2003).

JETP Lett. (1)

E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov, V. N. Serkin, "Decay of optical solitons," JETP Lett. 42, 87-91 (1985).

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. (2)

S. R. Clarke, R. H. J. Grimshaw, B. A. Malomed, "Soliton formation from a pulse passing the zero dispersion point in a nonlinear Schrodinger equation," Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 61, 5794-5801 (2000).

R. A. Vicencio, M. I. Molina, Y. S. Kivshar, "Switching of discrete optical solitons in engineered waveguide arrays," Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 70, 026โ€‰602 (2004).

Other (2)

G. P. Agrawal, Fiber Optic Communication Systems (Wiley, 2001).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.