Abstract

The characteristics of triangular photonic crystal fibers (PCFs) with elliptical holes filled with a nematic liquid crystal (LC) are investigated theoretically. The analysis that is carried out using the finite-element method, including material dispersion effects, shows that LC anisotropy and hole ellipticity allow some phenomena that are not predicted yet, such as polarization-dependent losses and birefringence sign change in the wavelength range used for standard telecom fibers. Control of these features allows the design of new devices for sensing or telecommunication applications.

© 2007 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. A. Bjarklev, J. Broeng, A. Sanchez Bjarklev, Photonic Crystal Fibres (Kluwer, 2003).
  2. J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides," Opt. Fiber Technol. 5, 305-330 (1999).
  3. T. A. Birks, J. C. Knight, B. J. Mangan, P. S. J. Russel, "Photonic crystal fibers: An endless variety," IEICE Trans. Electron. E84-C, 585-592 (2001).
  4. J. Noda, K. Okamoto, Y. Sasaki, "Polarization maintaining fibers and their applications," J. Lightw. Technol. LT-4, 1071-1089 (1986).
  5. M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, "Single-polarization operation of highly birefringent bow-tie optical fibers," Electron. Lett. 19, 246-247 (1983).
  6. F. C. McNeille, E. Riis, J. Broeng, J. R. Folkenberg, A. Petersson, H. Simsonsen, C. Jacobsen, "Highly polarized photonic crystal fiber laser," Opt. Express 12, 3981-3987 (2004) http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-17-3981.
  7. G. Kakarantzas, A. Ortigosa-Blanch, T. A. Birks, P. S. J. Russell, L. Farr, F. County, B. J. Mangan, "Structural rocking filters in highly birefringent photonic crystal fiber," Opt. Lett. 28, 158-160 (2003) http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-3-158.
  8. J. Ju, W. Jin, M. S. Demokan, "Two-mode operation in highly birefringent photonic crystal fiber," IEEE Photon. Technol. Lett. 16, 2472-2474 (2004).
  9. B. M. A. Rahman, A. K. M. S. Kabir, M. Rajarajan, K. T. V. Grattan, V. Rakocevic, "Birefringence study of photonic crystal fibers by using the full-vectorial finite element method ," Appl. Phys. B, Photophys. Laser Chem. 84, 75-82 (2006).
  10. K. Saitoh, M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
  11. X. Chen, M. Li, N. Venkataraman, M. T. Gallagher, W. A. Wood, A. M. Crowley, J. P. Carberry, L. A. Zenteno, K. W. Koch, "Highly birefringent hollow-core photonic bandgap fiber," Opt. Express 12, 3888-3893 (2004) http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-16-3888.
  12. X. Yu, M. Yan, L. W. Luo, P. Shum, "Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical cladding rods," IEEE Photon. Technol. Lett. 18, 1243-1245 (2006).
  13. C. Zhang, G. Kai, Z. Wang, T. S. Chao Wang, Y. Liu, J. Liu, W. Zhang, S. Yuan, X. Dong, "Design of tunable bandgap guidance in high index filled microstructured fibers," J. Opt. Soc. Amer. B, Opt. Phys. 23, 782-786 (2006).
  14. T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
  15. D. C. Zografopoulos, E. E. Kriezis, T. D. Tsiboukis, "Tunable highly birefringent bandgap-guiding liquid-crystal microstructured fibers," J. Lightw. Technol. 24, 3427-3432 (2006).
  16. T. T. Alkeskjold, Optical Devices based on Liquid Crystal Photonic Bandgap Fibers Ph.D. dissertation Res. Center COM Tech. Univ. DenmarkCopenhagenDenmark (2005).
  17. T. T. Larsen, A. Bjarklev, D. S. Hermann, J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003).
  18. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber ," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
  19. T. T. Alkeskjold, J. Laegsgaard, D. S. Hermann, A. Anawati, J. Broeng, J. Li, S. T. Wu, A. Bjarklev, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12, 5857-5871 (2004).
  20. L. Scolari, T. T. Alkeskjold, D. S. Hermann, A. Anawathi, M. D. Nielsen, A. Bjarklev, J. Riishede, P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005).
  21. J. Li, S. T. Wu, "Extended cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 19-24 (2004).
  22. A. Ghatak, K. Thyagarajan, Introduction to Fiber Optics (Cambridge Univ. Press, 1998).
  23. I. Cristiani, C. Liberale, V. Degiorgio, G. Tartarini, P. Bassi, "Nonlinear characterization and modeling of periodically poled lithium niobate waveguides for 1.5 µm-band cascaded wavelength conversion," Opt. Commun. 187, 263-270 (2001).
  24. G. Tartarini, R. Stolte, H. Renner, "Experimental and theoretical analysis of leaky extraordinary modes in negative uniaxial channel waveguides," Opt. Commun. 253, 109-117 (2005).
  25. H. E. Hernàndez-Figueroa, F. A. Fernàndez, Y. Lu, J. B. Davies, "Vectorial finite element modelling of 2D leaky waveguides," IEEE Trans. Magn. 31, 1710-1713 (1995).
  26. G. Tartarini, "Efficient β-formulation for the FEM analysis of leaky modes in general anisotropic channel waveguides," Opt. Quantum Electron. 32, 719-734 (2000).
  27. M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, L. C. Botten, "Symmetry and degeneracy in microstructured optical fibers," Opt. Lett. 26, 488-490 (2001).
  28. http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands See for example the MIT Photonic-Bands (MPB) package.

2006 (5)

B. M. A. Rahman, A. K. M. S. Kabir, M. Rajarajan, K. T. V. Grattan, V. Rakocevic, "Birefringence study of photonic crystal fibers by using the full-vectorial finite element method ," Appl. Phys. B, Photophys. Laser Chem. 84, 75-82 (2006).

X. Yu, M. Yan, L. W. Luo, P. Shum, "Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical cladding rods," IEEE Photon. Technol. Lett. 18, 1243-1245 (2006).

C. Zhang, G. Kai, Z. Wang, T. S. Chao Wang, Y. Liu, J. Liu, W. Zhang, S. Yuan, X. Dong, "Design of tunable bandgap guidance in high index filled microstructured fibers," J. Opt. Soc. Amer. B, Opt. Phys. 23, 782-786 (2006).

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).

D. C. Zografopoulos, E. E. Kriezis, T. D. Tsiboukis, "Tunable highly birefringent bandgap-guiding liquid-crystal microstructured fibers," J. Lightw. Technol. 24, 3427-3432 (2006).

2005 (3)

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber ," IEEE Photon. Technol. Lett. 17, 819-821 (2005).

L. Scolari, T. T. Alkeskjold, D. S. Hermann, A. Anawathi, M. D. Nielsen, A. Bjarklev, J. Riishede, P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005).

G. Tartarini, R. Stolte, H. Renner, "Experimental and theoretical analysis of leaky extraordinary modes in negative uniaxial channel waveguides," Opt. Commun. 253, 109-117 (2005).

2004 (5)

2003 (3)

2001 (3)

I. Cristiani, C. Liberale, V. Degiorgio, G. Tartarini, P. Bassi, "Nonlinear characterization and modeling of periodically poled lithium niobate waveguides for 1.5 µm-band cascaded wavelength conversion," Opt. Commun. 187, 263-270 (2001).

T. A. Birks, J. C. Knight, B. J. Mangan, P. S. J. Russel, "Photonic crystal fibers: An endless variety," IEICE Trans. Electron. E84-C, 585-592 (2001).

M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, L. C. Botten, "Symmetry and degeneracy in microstructured optical fibers," Opt. Lett. 26, 488-490 (2001).

2000 (1)

G. Tartarini, "Efficient β-formulation for the FEM analysis of leaky modes in general anisotropic channel waveguides," Opt. Quantum Electron. 32, 719-734 (2000).

1999 (1)

J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides," Opt. Fiber Technol. 5, 305-330 (1999).

1995 (1)

H. E. Hernàndez-Figueroa, F. A. Fernàndez, Y. Lu, J. B. Davies, "Vectorial finite element modelling of 2D leaky waveguides," IEEE Trans. Magn. 31, 1710-1713 (1995).

1986 (1)

J. Noda, K. Okamoto, Y. Sasaki, "Polarization maintaining fibers and their applications," J. Lightw. Technol. LT-4, 1071-1089 (1986).

1983 (1)

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, "Single-polarization operation of highly birefringent bow-tie optical fibers," Electron. Lett. 19, 246-247 (1983).

Appl. Phys. B, Photophys. Laser Chem. (1)

B. M. A. Rahman, A. K. M. S. Kabir, M. Rajarajan, K. T. V. Grattan, V. Rakocevic, "Birefringence study of photonic crystal fibers by using the full-vectorial finite element method ," Appl. Phys. B, Photophys. Laser Chem. 84, 75-82 (2006).

Electron. Lett. (1)

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, "Single-polarization operation of highly birefringent bow-tie optical fibers," Electron. Lett. 19, 246-247 (1983).

IEEE Photon. Technol. Lett. (4)

K. Saitoh, M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).

X. Yu, M. Yan, L. W. Luo, P. Shum, "Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical cladding rods," IEEE Photon. Technol. Lett. 18, 1243-1245 (2006).

J. Ju, W. Jin, M. S. Demokan, "Two-mode operation in highly birefringent photonic crystal fiber," IEEE Photon. Technol. Lett. 16, 2472-2474 (2004).

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber ," IEEE Photon. Technol. Lett. 17, 819-821 (2005).

IEEE Trans. Magn. (1)

H. E. Hernàndez-Figueroa, F. A. Fernàndez, Y. Lu, J. B. Davies, "Vectorial finite element modelling of 2D leaky waveguides," IEEE Trans. Magn. 31, 1710-1713 (1995).

IEICE Trans. Electron. (1)

T. A. Birks, J. C. Knight, B. J. Mangan, P. S. J. Russel, "Photonic crystal fibers: An endless variety," IEICE Trans. Electron. E84-C, 585-592 (2001).

J. Appl. Phys. (1)

J. Li, S. T. Wu, "Extended cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 19-24 (2004).

J. Lightw. Technol. (2)

J. Noda, K. Okamoto, Y. Sasaki, "Polarization maintaining fibers and their applications," J. Lightw. Technol. LT-4, 1071-1089 (1986).

D. C. Zografopoulos, E. E. Kriezis, T. D. Tsiboukis, "Tunable highly birefringent bandgap-guiding liquid-crystal microstructured fibers," J. Lightw. Technol. 24, 3427-3432 (2006).

J. Opt. Soc. Amer. B, Opt. Phys. (1)

C. Zhang, G. Kai, Z. Wang, T. S. Chao Wang, Y. Liu, J. Liu, W. Zhang, S. Yuan, X. Dong, "Design of tunable bandgap guidance in high index filled microstructured fibers," J. Opt. Soc. Amer. B, Opt. Phys. 23, 782-786 (2006).

Meas. Sci. Technol. (1)

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).

Opt. Commun. (2)

I. Cristiani, C. Liberale, V. Degiorgio, G. Tartarini, P. Bassi, "Nonlinear characterization and modeling of periodically poled lithium niobate waveguides for 1.5 µm-band cascaded wavelength conversion," Opt. Commun. 187, 263-270 (2001).

G. Tartarini, R. Stolte, H. Renner, "Experimental and theoretical analysis of leaky extraordinary modes in negative uniaxial channel waveguides," Opt. Commun. 253, 109-117 (2005).

Opt. Express (5)

Opt. Fiber Technol. (1)

J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides," Opt. Fiber Technol. 5, 305-330 (1999).

Opt. Lett. (2)

Opt. Quantum Electron. (1)

G. Tartarini, "Efficient β-formulation for the FEM analysis of leaky modes in general anisotropic channel waveguides," Opt. Quantum Electron. 32, 719-734 (2000).

Other (4)

http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands See for example the MIT Photonic-Bands (MPB) package.

A. Ghatak, K. Thyagarajan, Introduction to Fiber Optics (Cambridge Univ. Press, 1998).

A. Bjarklev, J. Broeng, A. Sanchez Bjarklev, Photonic Crystal Fibres (Kluwer, 2003).

T. T. Alkeskjold, Optical Devices based on Liquid Crystal Photonic Bandgap Fibers Ph.D. dissertation Res. Center COM Tech. Univ. DenmarkCopenhagenDenmark (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.