Abstract

We investigate the properties of the modes that are supported by 3-D subwavelength plasmonic slot waveguides. We first show that the fundamental mode that is supported by a symmetric plasmonic slot waveguide, which is composed of a subwavelength slot in a thin metallic film embedded in an infinite homogeneous dielectric, is always a bound mode for any combination of operating wavelength and waveguide parameters. Its modal fields are highly confined over a wavelength range extending from zero frequency to the ultraviolet. We then show that for an asymmetric plasmonic slot waveguide, in which the surrounding dielectric media above and below the metal film are different, there may exist a cutoff slot width and/or a cutoff metal film thickness above which the mode becomes leaky, and there always exists a cutoff wavelength above which the mode becomes leaky. We investigate in detail the effect of variations of the parameters of the symmetric and asymmetric plasmonic slot waveguides. We also consider related alternative 3-D plasmonic waveguide geometries, such as a plasmonic slot waveguide, in which the two metal film regions that form the slot have a finite width, and a plasmonic strip waveguide, which is formed between a metallic strip and a metallic substrate. We show that for a specific modal size, the fundamental mode of the standard plasmonic slot waveguide has a larger propagation length compared with the corresponding modes of these plasmonic waveguides.

© 2007 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
  2. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997).
  3. J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light ," Phys. Rev. B, Condens. Matter 60, 9061-9068 (1999).
  4. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002).
  5. M. L. Brongersma, J. W. Hartman, H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B, Condens. Matter 62, R16 356-R16 359 (2000).
  6. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046 802 (2005).
  8. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators ," Nature 440, 508-511 (2006).
  9. D. M. Pozar, Microwave Engineering (Wiley, 1998).
  10. E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969).
  11. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  12. R. Zia, M. D. Selker, P. B. Catrysse, M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Amer. A, Opt. Image Sci. 21, 2442-2446 (2004).
  13. K. Tanaka, M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide ," Appl. Phys. Lett. 82, 1158-1160 (2003).
  14. F. Kusunoki, T. Yotsuya, J. Takahara, T. Kobayashi, "Propagation properties of guided waves in index-guided two-dimensional optical waveguides ," Appl. Phys. Lett. 86, 211 101 (2005).
  15. G. Veronis, S. Fan, "Guided subwavelength plasmonic mode supported by a slot in a thin metal film," Opt. Lett. 30, 3359-3361 (2005).
  16. L. Liu, Z. Han, S. He, "Novel surface plasmon waveguide for high integration," Opt. Express 13, 6645-6650 (2005).
  17. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261 114 (2005).
  18. J. A. Dionne, H. J. Lezec, H. A. Atwater, "Highly confined photon transport in subwavelength metallic slot waveguides," Nano Lett. 6, 1928-1932 (2006).
  19. L. Chen, J. Shakya, M. Lipson, "Subwavelength confinement in an integrated metal slot waveguide on silicon," Opt. Lett. 31, 2133-2135 (2006).
  20. J. A. Pereda, A. Vegas, A. Prieto, "An improved compact 2D full-wave FDFD method for general guided wave structures," Microw. Opt. Technol. Lett. 38, 331-335 (2003).
  21. J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).
  22. S. J. Al-Bader, "Optical transmission on metallic wires—Fundamental modes," IEEE J. Quantum Electron. 40, 325-329 (2004).
  23. H. J. Hagemann, W. Gudat, C. Kunz, "Optical constants from the far infrared to the X-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3," J. Opt. Soc. Amer. 65, 742-744 (1975).
  24. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  25. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061 106 (2005).
  26. L. Vivien, S. Laval, E. Cassan, X. Le Roux, D. Pascal, "2-D taper for low-loss coupling between polarization-insensitive microwaveguides and single-mode optical fibers," J. Lightw. Technol. 21, 2429-2433 (2003).
  27. S. L. Chuang, Physics of Optoelectronic Devices (Wiley, 1995).
  28. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, S. I. Bozhevolnyi, "Channel plasmon-polaritons: Modal shape, dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006).
  29. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B, Condens. Matter 61, 10 484-10 503 (2000).

2006 (4)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators ," Nature 440, 508-511 (2006).

J. A. Dionne, H. J. Lezec, H. A. Atwater, "Highly confined photon transport in subwavelength metallic slot waveguides," Nano Lett. 6, 1928-1932 (2006).

L. Chen, J. Shakya, M. Lipson, "Subwavelength confinement in an integrated metal slot waveguide on silicon," Opt. Lett. 31, 2133-2135 (2006).

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, S. I. Bozhevolnyi, "Channel plasmon-polaritons: Modal shape, dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006).

2005 (6)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046 802 (2005).

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061 106 (2005).

F. Kusunoki, T. Yotsuya, J. Takahara, T. Kobayashi, "Propagation properties of guided waves in index-guided two-dimensional optical waveguides ," Appl. Phys. Lett. 86, 211 101 (2005).

G. Veronis, S. Fan, "Guided subwavelength plasmonic mode supported by a slot in a thin metal film," Opt. Lett. 30, 3359-3361 (2005).

L. Liu, Z. Han, S. He, "Novel surface plasmon waveguide for high integration," Opt. Express 13, 6645-6650 (2005).

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261 114 (2005).

2004 (2)

R. Zia, M. D. Selker, P. B. Catrysse, M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Amer. A, Opt. Image Sci. 21, 2442-2446 (2004).

S. J. Al-Bader, "Optical transmission on metallic wires—Fundamental modes," IEEE J. Quantum Electron. 40, 325-329 (2004).

2003 (5)

L. Vivien, S. Laval, E. Cassan, X. Le Roux, D. Pascal, "2-D taper for low-loss coupling between polarization-insensitive microwaveguides and single-mode optical fibers," J. Lightw. Technol. 21, 2429-2433 (2003).

K. Tanaka, M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide ," Appl. Phys. Lett. 82, 1158-1160 (2003).

J. A. Pereda, A. Vegas, A. Prieto, "An improved compact 2D full-wave FDFD method for general guided wave structures," Microw. Opt. Technol. Lett. 38, 331-335 (2003).

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).

W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).

2002 (1)

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002).

2000 (2)

M. L. Brongersma, J. W. Hartman, H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B, Condens. Matter 62, R16 356-R16 359 (2000).

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B, Condens. Matter 61, 10 484-10 503 (2000).

1999 (1)

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light ," Phys. Rev. B, Condens. Matter 60, 9061-9068 (1999).

1997 (1)

1975 (1)

H. J. Hagemann, W. Gudat, C. Kunz, "Optical constants from the far infrared to the X-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3," J. Opt. Soc. Amer. 65, 742-744 (1975).

1969 (1)

E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969).

Appl. Phys. Lett. (4)

K. Tanaka, M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide ," Appl. Phys. Lett. 82, 1158-1160 (2003).

F. Kusunoki, T. Yotsuya, J. Takahara, T. Kobayashi, "Propagation properties of guided waves in index-guided two-dimensional optical waveguides ," Appl. Phys. Lett. 86, 211 101 (2005).

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261 114 (2005).

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061 106 (2005).

Europhys. Lett. (1)

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002).

IEEE J. Quantum Electron. (1)

S. J. Al-Bader, "Optical transmission on metallic wires—Fundamental modes," IEEE J. Quantum Electron. 40, 325-329 (2004).

J. Lightw. Technol. (1)

L. Vivien, S. Laval, E. Cassan, X. Le Roux, D. Pascal, "2-D taper for low-loss coupling between polarization-insensitive microwaveguides and single-mode optical fibers," J. Lightw. Technol. 21, 2429-2433 (2003).

J. Opt. Soc. Amer. (1)

H. J. Hagemann, W. Gudat, C. Kunz, "Optical constants from the far infrared to the X-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3," J. Opt. Soc. Amer. 65, 742-744 (1975).

J. Opt. Soc. Amer. A, Opt. Image Sci. (1)

R. Zia, M. D. Selker, P. B. Catrysse, M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Amer. A, Opt. Image Sci. 21, 2442-2446 (2004).

Microw. Opt. Technol. Lett. (1)

J. A. Pereda, A. Vegas, A. Prieto, "An improved compact 2D full-wave FDFD method for general guided wave structures," Microw. Opt. Technol. Lett. 38, 331-335 (2003).

Nano Lett. (1)

J. A. Dionne, H. J. Lezec, H. A. Atwater, "Highly confined photon transport in subwavelength metallic slot waveguides," Nano Lett. 6, 1928-1932 (2006).

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).

Nature (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators ," Nature 440, 508-511 (2006).

W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. (1)

E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969).

Phys. Rev. B, Condens. Matter (3)

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light ," Phys. Rev. B, Condens. Matter 60, 9061-9068 (1999).

M. L. Brongersma, J. W. Hartman, H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B, Condens. Matter 62, R16 356-R16 359 (2000).

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B, Condens. Matter 61, 10 484-10 503 (2000).

Phys. Rev. Lett. (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046 802 (2005).

Other (5)

D. M. Pozar, Microwave Engineering (Wiley, 1998).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

S. L. Chuang, Physics of Optoelectronic Devices (Wiley, 1995).

J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.