Abstract

Polarization mode dispersion (PMD) is caused by noncircular fiber cores and poses a serious threat for transmitting 10-Gb/s optical signals over older fibers and 40-Gb/s optical signals over any type of fiber. We study the architecture of a PMD compensator (PMDC) capable of 40-Gb/s operation in <i>X</i> -cut <i>Y</i>-propagation lithium niobate (LiNbO<sub>3</sub>) based on cascaded integrated optical TE–TM mode converters with endlessly adjustable coupling phases and propose several improvements in its architecture to tailor its performance toward highest bit rates. The performance of such distributed PMDCs can be pushed toward highest bit rates of 160 and 640 Gb/s if they are implemented in mixed ferroelectric crystals such as lithium niobate tantalate (LiNb<sub>1−y</sub>Ta<sub>y</sub>O<sub>3</sub>) or lithium tantalate LiTaO<sub>3</sub> crystals, respectively. A tantalum (Ta) content <i>Y</i> of up to 0.5 is good to realize a distributed PMDC for about 160-Gb/s operation. Two- and three-phase TE–TM mode converters for integrated optical PMD compensation are compared, and the latter are found to have slightly better electrooptic efficiency. For <i>Z</i>-cut lithium tantalate, four-phase electrodes which need only two independent operation voltages are found to be more attractive.

© 2007 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. R. Noé, D. Sandel, M. Yoshhida-Dierolf, S. Hinz, V. Mirvoda, A. Schöpflin, C. Glingener, E. Gottwald, C. Scheerer, G. Fischer, T. Weyrauch, W. Haase, "Polarization mode dispersion compensation at 10, 20, and 40 Gb/s with various optical equalizers ," J. Lightw. Technol. 17, 1602-1616 (1999).
  2. F. Heismann, R. Ulrich, "Integrated optical single side band modulator and phase shifter," IEEE J. Quantum Electron. QE-18, 767-771 (1982).
  3. D. Sandel, R. Noé, "Proposal for distributed polarization mode dispersion compensator in lithium niobate ," Proc. ECIO (1999) pp. 237-240.
  4. R. Noé, D. Sandel, S. Hinz, M. Yoshida-Dierolf, V. Mirvoda, G. Feise, H. Herrmann, R. Ricken, W. Sohler, F. Wehrmann, C. Glingener, A. Schöpflin, A. Färbert, G. Fischer, "Integrated optical LiNbO3 distributed polarization mode dispersion compensator in 20 Gb/s transmission system," Electron. Lett. 35, 652-654 (1999).
  5. D. Sandel, V. Mirvoda, S. Bhandare, F. Wüst, R. Noé, "Some enabling techniques for polarization mode dispersion compensation," J. Lightw. Technol. 21, 1198-1210 (2003).
  6. R. Noé, D. Sandel, V. Mirvoda, "PMD in high-bit-rate systems and means for its mitigation," IEEE J. Sel. Topics Quantum Electron. 10, 341-355 (2004).
  7. D. Marcuse, "Electrostatic field of coplanar lines computed with the point matching method," IEEE J. Quantum Electron. 25, 939-947 (1989).
  8. C. M. Kim, R. V. Ramaswamy, "Overlap integral factors in integrated optic modulators and switches," J. Lightw. Technol. 7, 1063-1070 (1989).
  9. S. Bhandare, R. Noé, "Optimization of TE–TM mode converters on X-cut, Y-propagation LiNbO3 used for PMD compensation," J. Appl. Phys. B 73, 481-483 (2001).
  10. S. K. Sheem, W. K. Burns, A. F. Miltion, "Leaky-mode propagation in Ti-diffused LiNbO3 and LiTiO3 waveguides," Opt. Lett. 3, 76-78 (1978).
  11. W. K. Burns, S. K. Sheem, A. F. Milton, "Approximate analysis of leaky-mode loss coefficient for Ti-diffused LiNbO3 waveguides," IEEE J. Quantum Electron. QE-15, 1282-1289 (1979).
  12. D. Xue, K. Betzler, H. Hesse, "Dielectric properties of lithium niobate–tantalate crystals," Solid State Commun. 115, 581-585 (2000).
  13. S. Bhandare, R. Noé, "Pushing distributed PMD compensator performance toward highest bit rates by lithium niobate–tantalate or lithium tantalate crystals," 11th Eur. Conf. Integrated Optics (ECIO) PragueCzech Republic (2003) Paper WeA3.5.

2004 (1)

R. Noé, D. Sandel, V. Mirvoda, "PMD in high-bit-rate systems and means for its mitigation," IEEE J. Sel. Topics Quantum Electron. 10, 341-355 (2004).

2003 (1)

D. Sandel, V. Mirvoda, S. Bhandare, F. Wüst, R. Noé, "Some enabling techniques for polarization mode dispersion compensation," J. Lightw. Technol. 21, 1198-1210 (2003).

2001 (1)

S. Bhandare, R. Noé, "Optimization of TE–TM mode converters on X-cut, Y-propagation LiNbO3 used for PMD compensation," J. Appl. Phys. B 73, 481-483 (2001).

2000 (1)

D. Xue, K. Betzler, H. Hesse, "Dielectric properties of lithium niobate–tantalate crystals," Solid State Commun. 115, 581-585 (2000).

1999 (2)

R. Noé, D. Sandel, S. Hinz, M. Yoshida-Dierolf, V. Mirvoda, G. Feise, H. Herrmann, R. Ricken, W. Sohler, F. Wehrmann, C. Glingener, A. Schöpflin, A. Färbert, G. Fischer, "Integrated optical LiNbO3 distributed polarization mode dispersion compensator in 20 Gb/s transmission system," Electron. Lett. 35, 652-654 (1999).

R. Noé, D. Sandel, M. Yoshhida-Dierolf, S. Hinz, V. Mirvoda, A. Schöpflin, C. Glingener, E. Gottwald, C. Scheerer, G. Fischer, T. Weyrauch, W. Haase, "Polarization mode dispersion compensation at 10, 20, and 40 Gb/s with various optical equalizers ," J. Lightw. Technol. 17, 1602-1616 (1999).

1989 (2)

D. Marcuse, "Electrostatic field of coplanar lines computed with the point matching method," IEEE J. Quantum Electron. 25, 939-947 (1989).

C. M. Kim, R. V. Ramaswamy, "Overlap integral factors in integrated optic modulators and switches," J. Lightw. Technol. 7, 1063-1070 (1989).

1982 (1)

F. Heismann, R. Ulrich, "Integrated optical single side band modulator and phase shifter," IEEE J. Quantum Electron. QE-18, 767-771 (1982).

1979 (1)

W. K. Burns, S. K. Sheem, A. F. Milton, "Approximate analysis of leaky-mode loss coefficient for Ti-diffused LiNbO3 waveguides," IEEE J. Quantum Electron. QE-15, 1282-1289 (1979).

1978 (1)

Electron. Lett. (1)

R. Noé, D. Sandel, S. Hinz, M. Yoshida-Dierolf, V. Mirvoda, G. Feise, H. Herrmann, R. Ricken, W. Sohler, F. Wehrmann, C. Glingener, A. Schöpflin, A. Färbert, G. Fischer, "Integrated optical LiNbO3 distributed polarization mode dispersion compensator in 20 Gb/s transmission system," Electron. Lett. 35, 652-654 (1999).

IEEE J. Quantum Electron. (3)

F. Heismann, R. Ulrich, "Integrated optical single side band modulator and phase shifter," IEEE J. Quantum Electron. QE-18, 767-771 (1982).

D. Marcuse, "Electrostatic field of coplanar lines computed with the point matching method," IEEE J. Quantum Electron. 25, 939-947 (1989).

W. K. Burns, S. K. Sheem, A. F. Milton, "Approximate analysis of leaky-mode loss coefficient for Ti-diffused LiNbO3 waveguides," IEEE J. Quantum Electron. QE-15, 1282-1289 (1979).

IEEE J. Sel. Topics Quantum Electron. (1)

R. Noé, D. Sandel, V. Mirvoda, "PMD in high-bit-rate systems and means for its mitigation," IEEE J. Sel. Topics Quantum Electron. 10, 341-355 (2004).

J. Appl. Phys. B (1)

S. Bhandare, R. Noé, "Optimization of TE–TM mode converters on X-cut, Y-propagation LiNbO3 used for PMD compensation," J. Appl. Phys. B 73, 481-483 (2001).

J. Lightw. Technol. (3)

R. Noé, D. Sandel, M. Yoshhida-Dierolf, S. Hinz, V. Mirvoda, A. Schöpflin, C. Glingener, E. Gottwald, C. Scheerer, G. Fischer, T. Weyrauch, W. Haase, "Polarization mode dispersion compensation at 10, 20, and 40 Gb/s with various optical equalizers ," J. Lightw. Technol. 17, 1602-1616 (1999).

C. M. Kim, R. V. Ramaswamy, "Overlap integral factors in integrated optic modulators and switches," J. Lightw. Technol. 7, 1063-1070 (1989).

D. Sandel, V. Mirvoda, S. Bhandare, F. Wüst, R. Noé, "Some enabling techniques for polarization mode dispersion compensation," J. Lightw. Technol. 21, 1198-1210 (2003).

Opt. Lett. (1)

Solid State Commun. (1)

D. Xue, K. Betzler, H. Hesse, "Dielectric properties of lithium niobate–tantalate crystals," Solid State Commun. 115, 581-585 (2000).

Other (2)

S. Bhandare, R. Noé, "Pushing distributed PMD compensator performance toward highest bit rates by lithium niobate–tantalate or lithium tantalate crystals," 11th Eur. Conf. Integrated Optics (ECIO) PragueCzech Republic (2003) Paper WeA3.5.

D. Sandel, R. Noé, "Proposal for distributed polarization mode dispersion compensator in lithium niobate ," Proc. ECIO (1999) pp. 237-240.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.