Abstract

In this paper, we investigate the temperature dependence of a silicon-on-insulator-based silicon nanophotonic ring resonator covered with a polymeric overlayer. Temperature-dependent wavelength shift is measured to be as low as 5 pm/°C for the TM mode in a silicon ring resonator composed of a 500 × 220 nm<sup>2</sup> channel waveguide. We also show through simulations and experiments that the temperature dependence can be reduced for the TE mode or for both the TE and TM modes by adjusting the mode volume of a silicon nanophotonic waveguide.

© 2007 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription