Abstract

This paper addresses the problem of resource allocation in a multiservice optical network based on an overlapped code-division-multiple-access system. A joint transmission power and overlapping coefficient (transmission rate) allocation strategy is provided via the solution of a constrained convex quadratic optimization problem. The solution of this problem maximizes the aggregate throughput subject to peak laser transmission power constraints. The optimization problem is solved in a closed form, and the resource allocation strategy is simple to implement in an optical network. Simulation results are presented, showing a total agreement between the derived analytical solution and the one obtained using a numerical search method. In addition, analytical and numerical results show that the proposed resource allocation strategy can offer substantial improvement in the system throughput.

© 2007 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription