Abstract

A measure of polarization changing speed of the light depolarized by a simple depolarizer is proposed. The polarization changing speed can be quantified by using the variance of the average of polarization state. In addition, the measure is theoretically formulated as a function of the linewidth of a light source. For this goal, the polarization state parameter is defined, and its autocorrelation is derived mathematically. Because the proposed measure is based on the statistics of averaged polarization, it also gives us the statistical information of the average of the physical quantity directly related to the polarization. For verification of the physical importance, an experiment is performed. The experimental result shows good agreement with theory. The proposed measure is proven to be suitable for quantifying randomly varying polarization changing speed.

© 2007 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. R. Slavík, J. Homola, J. Čtyroký, E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Actuators B, Chem. 74, 106-111 (2001).
  2. T. Yang, C. Shu, C. Lin, "Depolarization technique for wavelength conversion using four-wave mixing in a dispersion-flattened photonic crystal fiber," Opt. Express 13, 5409-5415 (2005).
  3. F. Heismann, R. W. Smith, "High-speed polarization scrambler with adjustable phase chirp," IEEE J. Sel. Topics Quantum Electron. 2, 311-318 (1996).
  4. S. Yamashita, K. Hotate, "Polarization-independent depolarizers for highly coherent light using Faraday rotator mirrors ," J. Lightw. Technol. 15, 900-905 (1997).
  5. I. Yoon, B. Lee, S. Park, "A fiber depolarizer using polarization beam splitter loop structure for narrow linewidth light source," IEEE Photon. Technol. Lett. 18, 776-778 (2006).
  6. M. G. Taylor, S. J. Penticost, "Improvement in performance of long haul EDFA link using high frequency polarization modulation ," Electron. Lett. 30, 805-806 (1994).
  7. F. Heismann, D. A. Gray, B. H. Lee, R. W. Smith, "Electrooptic polarization scramblers for optically-amplified long-haul transmission systems ," IEEE Photon. Technol. Lett. 6, 1156-1158 (1994).
  8. M. Martinelli, J. C. Palais, "Depolarization bandwidth of fiber optic passive depolarizers," Opt. Eng. 40, 142-143 (2001).
  9. P. Poggiolini, S. Benedetto, "Theory of polarization spreading techniques—Part I," IEEE Trans. Commun. 42, 2105-2118 (1994).
  10. A. Leon-Garcia, Probability and Random Process for Electrical Engineering (Addison-Wesley, 1995).

2006 (1)

I. Yoon, B. Lee, S. Park, "A fiber depolarizer using polarization beam splitter loop structure for narrow linewidth light source," IEEE Photon. Technol. Lett. 18, 776-778 (2006).

2005 (1)

2001 (2)

R. Slavík, J. Homola, J. Čtyroký, E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Actuators B, Chem. 74, 106-111 (2001).

M. Martinelli, J. C. Palais, "Depolarization bandwidth of fiber optic passive depolarizers," Opt. Eng. 40, 142-143 (2001).

1997 (1)

S. Yamashita, K. Hotate, "Polarization-independent depolarizers for highly coherent light using Faraday rotator mirrors ," J. Lightw. Technol. 15, 900-905 (1997).

1996 (1)

F. Heismann, R. W. Smith, "High-speed polarization scrambler with adjustable phase chirp," IEEE J. Sel. Topics Quantum Electron. 2, 311-318 (1996).

1994 (3)

M. G. Taylor, S. J. Penticost, "Improvement in performance of long haul EDFA link using high frequency polarization modulation ," Electron. Lett. 30, 805-806 (1994).

F. Heismann, D. A. Gray, B. H. Lee, R. W. Smith, "Electrooptic polarization scramblers for optically-amplified long-haul transmission systems ," IEEE Photon. Technol. Lett. 6, 1156-1158 (1994).

P. Poggiolini, S. Benedetto, "Theory of polarization spreading techniques—Part I," IEEE Trans. Commun. 42, 2105-2118 (1994).

Electron. Lett. (1)

M. G. Taylor, S. J. Penticost, "Improvement in performance of long haul EDFA link using high frequency polarization modulation ," Electron. Lett. 30, 805-806 (1994).

IEEE J. Sel. Topics Quantum Electron. (1)

F. Heismann, R. W. Smith, "High-speed polarization scrambler with adjustable phase chirp," IEEE J. Sel. Topics Quantum Electron. 2, 311-318 (1996).

IEEE Photon. Technol. Lett. (2)

F. Heismann, D. A. Gray, B. H. Lee, R. W. Smith, "Electrooptic polarization scramblers for optically-amplified long-haul transmission systems ," IEEE Photon. Technol. Lett. 6, 1156-1158 (1994).

I. Yoon, B. Lee, S. Park, "A fiber depolarizer using polarization beam splitter loop structure for narrow linewidth light source," IEEE Photon. Technol. Lett. 18, 776-778 (2006).

IEEE Trans. Commun. (1)

P. Poggiolini, S. Benedetto, "Theory of polarization spreading techniques—Part I," IEEE Trans. Commun. 42, 2105-2118 (1994).

J. Lightw. Technol. (1)

S. Yamashita, K. Hotate, "Polarization-independent depolarizers for highly coherent light using Faraday rotator mirrors ," J. Lightw. Technol. 15, 900-905 (1997).

Opt. Eng. (1)

M. Martinelli, J. C. Palais, "Depolarization bandwidth of fiber optic passive depolarizers," Opt. Eng. 40, 142-143 (2001).

Opt. Express (1)

Sens. Actuators B, Chem. (1)

R. Slavík, J. Homola, J. Čtyroký, E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Actuators B, Chem. 74, 106-111 (2001).

Other (1)

A. Leon-Garcia, Probability and Random Process for Electrical Engineering (Addison-Wesley, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.