Abstract

In this paper, we propose and demonstrate an original exploitation of relaxation oscillations of erbium-doped-fiber laser ring resonators based on a general model for Er cross-sectional characterization. Its main advantage as compared to other existing exploitations relies on the fact that only weak approximations relative to spatial light distribution in the laser are imposed. It is therefore applicable to various resonator configurations, i.e., independent of the active-media length and losses encountered during the single-pass loop propagation. An experimental demonstration is finally presented by comparing the extracted Erbium parameters (intrinsic saturation power and absorption) to those obtained with other methods.

© 2007 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. W. L. Barnes, P. R. Morkel, L. Reekie, D. N. Payne, "High quantum efficiency ER3$+$-fibre lasers pumped at 980 nm ," Opt. Lett. 14, 1002-1004 (1989).
  2. P. K. Cheo, L. Wang, M. Ding, "Low-threshold, self-tuned and passively mode-locked coupled-cavity all-fiber lasers ," IEEE Photon. Technol. Lett. 8, 66-68 (1996).
  3. H. K. Lee, K. H. Kim, M.-Y. Jeon, J. T. Ahn, E.-H. Lee, "All-optical wavelength conversion using cavity dumped fiber laser with nonlinear optical loop mirror," Electron. Lett. 33, 791-792 (1997).
  4. Y. Su, L. Wang, A. Agarwal, P. Kumar, "Wavelength-tunable all-optical recovery using a fiber-optic parametric oscillator," Opt. Commun. 184, 151-156 (2000).
  5. C. R. Giles, C. A. Burrus, D. DiGiovanni, N. K. Dutta, G. Raybon, "Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers," IEEE Photon. Technol. Lett. 3, 363-365 (1991).
  6. C. R. Giles, D. DiGiovanni, "Spectral dependence of gain and noise in erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 2, 797-800 (1990).
  7. A. A. M. Saleh, R. M. Jopson, J. D. Evankow, J. Aspell, "Modeling of gain in erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 2, 714-717 (1990).
  8. O. G. Okhotnikov, V. V. Kuzmin, J. R. Salcedo, "General intracavity method for laser transition characterization by relaxation oscillations spectral analysis," IEEE Photon. Technol. Lett. 6, 362-364 (1994).
  9. I. J. Sola, J. C. Martín, J. M. Álvarez, S. Jarabo, "Erbium doped fibre characterisation by laser transient behaviour analysis," Opt. Comm. 193, 133-140 (2001).
  10. I. J. Sola, J. C. Martín, J. M. Álvarez, "980 and 1480 EDF characterization by ring tunable laser dynamic study," Opt. Commun. 203, 349-358 (2002).
  11. I. J. Sola, J. C. Martin, J. M. Alvarez, "Unidirectional ring erbium doped fibre laser modelization for characterization in transient regime ," J. Mod. Opt. 53, 525-538 (2006).
  12. C. R. Giles, E. Desurvire, "Modeling erbium-doped fiber amplifiers," J. Lightw. Technol. 9, 271-283 (1991).
  13. Y. Sun, G. Luo, J. L. Zyskind, A. A. M. Saleh, A. K. Srivastava, J. W. Sulhoff, "Model for gain dynamics in erbium-doped fibre amplifiers," Electron. Lett. 32, 1490-1491 (1996).
  14. A. Bononi, L. A. Rusch, "Doped-fiber amplifier dynamics: A system perspective," J. Lightw. Technol. 16, 945-956 (1998).
  15. A. Bononi, L. Barbieri, "Design of gain-clamped doped-fiber amplifiers for optimal dynamic performance," J. Lightw. Technol. 17, 1229-1240 (1999).

2006 (1)

I. J. Sola, J. C. Martin, J. M. Alvarez, "Unidirectional ring erbium doped fibre laser modelization for characterization in transient regime ," J. Mod. Opt. 53, 525-538 (2006).

2002 (1)

I. J. Sola, J. C. Martín, J. M. Álvarez, "980 and 1480 EDF characterization by ring tunable laser dynamic study," Opt. Commun. 203, 349-358 (2002).

2001 (1)

I. J. Sola, J. C. Martín, J. M. Álvarez, S. Jarabo, "Erbium doped fibre characterisation by laser transient behaviour analysis," Opt. Comm. 193, 133-140 (2001).

2000 (1)

Y. Su, L. Wang, A. Agarwal, P. Kumar, "Wavelength-tunable all-optical recovery using a fiber-optic parametric oscillator," Opt. Commun. 184, 151-156 (2000).

1999 (1)

A. Bononi, L. Barbieri, "Design of gain-clamped doped-fiber amplifiers for optimal dynamic performance," J. Lightw. Technol. 17, 1229-1240 (1999).

1998 (1)

A. Bononi, L. A. Rusch, "Doped-fiber amplifier dynamics: A system perspective," J. Lightw. Technol. 16, 945-956 (1998).

1997 (1)

H. K. Lee, K. H. Kim, M.-Y. Jeon, J. T. Ahn, E.-H. Lee, "All-optical wavelength conversion using cavity dumped fiber laser with nonlinear optical loop mirror," Electron. Lett. 33, 791-792 (1997).

1996 (2)

P. K. Cheo, L. Wang, M. Ding, "Low-threshold, self-tuned and passively mode-locked coupled-cavity all-fiber lasers ," IEEE Photon. Technol. Lett. 8, 66-68 (1996).

Y. Sun, G. Luo, J. L. Zyskind, A. A. M. Saleh, A. K. Srivastava, J. W. Sulhoff, "Model for gain dynamics in erbium-doped fibre amplifiers," Electron. Lett. 32, 1490-1491 (1996).

1994 (1)

O. G. Okhotnikov, V. V. Kuzmin, J. R. Salcedo, "General intracavity method for laser transition characterization by relaxation oscillations spectral analysis," IEEE Photon. Technol. Lett. 6, 362-364 (1994).

1991 (2)

C. R. Giles, C. A. Burrus, D. DiGiovanni, N. K. Dutta, G. Raybon, "Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers," IEEE Photon. Technol. Lett. 3, 363-365 (1991).

C. R. Giles, E. Desurvire, "Modeling erbium-doped fiber amplifiers," J. Lightw. Technol. 9, 271-283 (1991).

1990 (2)

C. R. Giles, D. DiGiovanni, "Spectral dependence of gain and noise in erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 2, 797-800 (1990).

A. A. M. Saleh, R. M. Jopson, J. D. Evankow, J. Aspell, "Modeling of gain in erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 2, 714-717 (1990).

1989 (1)

Electron. Lett. (2)

H. K. Lee, K. H. Kim, M.-Y. Jeon, J. T. Ahn, E.-H. Lee, "All-optical wavelength conversion using cavity dumped fiber laser with nonlinear optical loop mirror," Electron. Lett. 33, 791-792 (1997).

Y. Sun, G. Luo, J. L. Zyskind, A. A. M. Saleh, A. K. Srivastava, J. W. Sulhoff, "Model for gain dynamics in erbium-doped fibre amplifiers," Electron. Lett. 32, 1490-1491 (1996).

IEEE Photon. Technol. Lett. (5)

P. K. Cheo, L. Wang, M. Ding, "Low-threshold, self-tuned and passively mode-locked coupled-cavity all-fiber lasers ," IEEE Photon. Technol. Lett. 8, 66-68 (1996).

C. R. Giles, C. A. Burrus, D. DiGiovanni, N. K. Dutta, G. Raybon, "Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers," IEEE Photon. Technol. Lett. 3, 363-365 (1991).

C. R. Giles, D. DiGiovanni, "Spectral dependence of gain and noise in erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 2, 797-800 (1990).

A. A. M. Saleh, R. M. Jopson, J. D. Evankow, J. Aspell, "Modeling of gain in erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 2, 714-717 (1990).

O. G. Okhotnikov, V. V. Kuzmin, J. R. Salcedo, "General intracavity method for laser transition characterization by relaxation oscillations spectral analysis," IEEE Photon. Technol. Lett. 6, 362-364 (1994).

J. Lightw. Technol. (3)

A. Bononi, L. A. Rusch, "Doped-fiber amplifier dynamics: A system perspective," J. Lightw. Technol. 16, 945-956 (1998).

A. Bononi, L. Barbieri, "Design of gain-clamped doped-fiber amplifiers for optimal dynamic performance," J. Lightw. Technol. 17, 1229-1240 (1999).

C. R. Giles, E. Desurvire, "Modeling erbium-doped fiber amplifiers," J. Lightw. Technol. 9, 271-283 (1991).

J. Mod. Opt. (1)

I. J. Sola, J. C. Martin, J. M. Alvarez, "Unidirectional ring erbium doped fibre laser modelization for characterization in transient regime ," J. Mod. Opt. 53, 525-538 (2006).

Opt. Comm. (1)

I. J. Sola, J. C. Martín, J. M. Álvarez, S. Jarabo, "Erbium doped fibre characterisation by laser transient behaviour analysis," Opt. Comm. 193, 133-140 (2001).

Opt. Commun. (2)

I. J. Sola, J. C. Martín, J. M. Álvarez, "980 and 1480 EDF characterization by ring tunable laser dynamic study," Opt. Commun. 203, 349-358 (2002).

Y. Su, L. Wang, A. Agarwal, P. Kumar, "Wavelength-tunable all-optical recovery using a fiber-optic parametric oscillator," Opt. Commun. 184, 151-156 (2000).

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.