Abstract

In order to model transmission scanning near-field optical microscopy (T-SNOM) experiments, we study the interaction between a nanosized atomic-force-microscopy-type probe and the optical field in a microcavity (MC) at or near resonance. Using a 2-D cross-sectional model of an experimentally studied photonic crystal MC, we have simulated the T-SNOM method by scanning a probe over the surface while monitoring the transmitted and reflected power. The simulations were performed for two probe materials: silicon and silicon nitride. From the probe-induced change in the transmission and reflection spectra, a wavelength shift was extracted. A shift almost proportional to the local field intensity was found if the resonator was excited just below a resonance wavelength. However, at the spots of highest interaction, we observed that besides the desired resonance wavelength shift, there was an increase in scattering. Furthermore, by moving the probe at such a spot in the vertical direction to a height of approximately 0.5 μm, a 5% increase in transmission can be established because the antiresonant condition is satisfied. Finally, a 2-D top view simulation is presented of the experimentally studied T-SNOM method, which shows a remarkably good correspondence in intensity profile, except for the exact location of the high-interaction spots.

© 2007 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. L. Novotny, S. J. Stranick, "Near-field optical microscopy and spectroscopy with pointed probes," Annu. Rev. Phys. Chem. 57, 303-331 (2006).
  2. S. F. Wu, "Review of near-field optical microscopy," Front. Phys. China 1, 263-274 (2006).
  3. M. L. M. Balistreri, J. P. Korterik, G. J. Veldhuis, L. Kuipers, N. F. Van Hulst, "Quantitative photon tunneling and shear-force microscopy of planar waveguide splitters and mixers ," J. Appl. Phys. 89, 3307-3314 (2001).
  4. R. J. P. Engelen, T. J. Karle, H. Gersen, "Local probing of Bloch mode dispersion in a photonic crystal waveguide," Opt. Express 13, 4457-4464 (2005).
  5. D. J. W. Klunder, M. L. M. Balistreri, F. C. Blom, "Detailed analysis of the intracavity phenomena inside a cylindrical microresonator," J. Lightw. Technol. 20, 519-529 (2002).
  6. H. Gersen, J. P. Korterik, N. F. van Hulst, L. Kuipers, "Tracking ultrashort pulses through dispersive media: Experiment and theory," Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 68, 026 604/1-026 604/10 (2003).
  7. I. Stefanon, S. Blaize, A. Bruyant, "Heterodyne detection of guided waves using a scattering-type scanning near-field optical microscope," Opt. Express 13, 5553-5564 (2005).
  8. W. C. L. Hopman, K. O. Van Der Werf, A. J. F. Hollink, "Nano-mechanical tuning and imaging of a photonic crystal micro-cavity resonance," Opt. Express 14, 8745-8752 (2006).
  9. J. T. Robinson, S. F. Preble, M. Lipson, "Imaging highly confined modes in sub-micron scale silicon waveguides using transmission-based near-field scanning optical microscopy," Opt. Express 14, 10 588-10 595 (2006).
  10. I. Märki, M. Salt, H. P. Herzig, "Tuning the resonance of a photonic crystal microcavity with an AFM probe," Opt. Express 14, 2969-2978 (2006).
  11. M. Hammer, R. Stoffer, "PSTM/NSOM modeling by 2-D quadridirectional eigenmode expansion," J. Lightw. Technol. 23, 1956-1966 (2005).
  12. W. Bogaerts, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightw. Technol. 23, 401-412 (2005).
  13. M. Hammer, "Quadridirectional eigenmode expansion scheme for 2-D modeling of wave propagation in integrated optics," Opt. Commun. 235, 285-303 (2004).
  14. E. Flück, M. Hammer, A. M. Otter, "Amplitude and phase evolution of optical fields inside periodic photonic structures ," J. Lightw. Technol. 21, 1384-1393 (2003).
  15. H. Kogelnik, Guided-Wave Optoelectronics (Springer-Verlag, 1990) pp. 31.
  16. H. P. Uranus, H. J. W. M. Hoekstra, E. Van Groesen, "Considerations on material composition for low-loss hollow-core integrated optical waveguides ," Opt. Commun. 260, 577-582 (2006).
  17. B. Ben Bakir, C. Seassal, X. Letartre, "Room-temperature InAs/InP quantum dots laser operation based on heterogeneous ‘2.5 D’ photonic crystal," Opt. Express 14, 9269-9276 (2006).
  18. A. F. Koenderink, M. Kafesaki, B. C. Buchler, V. Sandoghdar, "Controlling the resonance of a photonic crystal microcavity by a near-field probe," Phys. Rev. Lett. 95, 153 904-1-153 904-4 (2005).

2006 (7)

L. Novotny, S. J. Stranick, "Near-field optical microscopy and spectroscopy with pointed probes," Annu. Rev. Phys. Chem. 57, 303-331 (2006).

S. F. Wu, "Review of near-field optical microscopy," Front. Phys. China 1, 263-274 (2006).

W. C. L. Hopman, K. O. Van Der Werf, A. J. F. Hollink, "Nano-mechanical tuning and imaging of a photonic crystal micro-cavity resonance," Opt. Express 14, 8745-8752 (2006).

J. T. Robinson, S. F. Preble, M. Lipson, "Imaging highly confined modes in sub-micron scale silicon waveguides using transmission-based near-field scanning optical microscopy," Opt. Express 14, 10 588-10 595 (2006).

I. Märki, M. Salt, H. P. Herzig, "Tuning the resonance of a photonic crystal microcavity with an AFM probe," Opt. Express 14, 2969-2978 (2006).

H. P. Uranus, H. J. W. M. Hoekstra, E. Van Groesen, "Considerations on material composition for low-loss hollow-core integrated optical waveguides ," Opt. Commun. 260, 577-582 (2006).

B. Ben Bakir, C. Seassal, X. Letartre, "Room-temperature InAs/InP quantum dots laser operation based on heterogeneous ‘2.5 D’ photonic crystal," Opt. Express 14, 9269-9276 (2006).

2005 (5)

A. F. Koenderink, M. Kafesaki, B. C. Buchler, V. Sandoghdar, "Controlling the resonance of a photonic crystal microcavity by a near-field probe," Phys. Rev. Lett. 95, 153 904-1-153 904-4 (2005).

I. Stefanon, S. Blaize, A. Bruyant, "Heterodyne detection of guided waves using a scattering-type scanning near-field optical microscope," Opt. Express 13, 5553-5564 (2005).

M. Hammer, R. Stoffer, "PSTM/NSOM modeling by 2-D quadridirectional eigenmode expansion," J. Lightw. Technol. 23, 1956-1966 (2005).

W. Bogaerts, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightw. Technol. 23, 401-412 (2005).

R. J. P. Engelen, T. J. Karle, H. Gersen, "Local probing of Bloch mode dispersion in a photonic crystal waveguide," Opt. Express 13, 4457-4464 (2005).

2004 (1)

M. Hammer, "Quadridirectional eigenmode expansion scheme for 2-D modeling of wave propagation in integrated optics," Opt. Commun. 235, 285-303 (2004).

2003 (2)

E. Flück, M. Hammer, A. M. Otter, "Amplitude and phase evolution of optical fields inside periodic photonic structures ," J. Lightw. Technol. 21, 1384-1393 (2003).

H. Gersen, J. P. Korterik, N. F. van Hulst, L. Kuipers, "Tracking ultrashort pulses through dispersive media: Experiment and theory," Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 68, 026 604/1-026 604/10 (2003).

2002 (1)

D. J. W. Klunder, M. L. M. Balistreri, F. C. Blom, "Detailed analysis of the intracavity phenomena inside a cylindrical microresonator," J. Lightw. Technol. 20, 519-529 (2002).

2001 (1)

M. L. M. Balistreri, J. P. Korterik, G. J. Veldhuis, L. Kuipers, N. F. Van Hulst, "Quantitative photon tunneling and shear-force microscopy of planar waveguide splitters and mixers ," J. Appl. Phys. 89, 3307-3314 (2001).

Annu. Rev. Phys. Chem. (1)

L. Novotny, S. J. Stranick, "Near-field optical microscopy and spectroscopy with pointed probes," Annu. Rev. Phys. Chem. 57, 303-331 (2006).

Front. Phys. China (1)

S. F. Wu, "Review of near-field optical microscopy," Front. Phys. China 1, 263-274 (2006).

J. Appl. Phys. (1)

M. L. M. Balistreri, J. P. Korterik, G. J. Veldhuis, L. Kuipers, N. F. Van Hulst, "Quantitative photon tunneling and shear-force microscopy of planar waveguide splitters and mixers ," J. Appl. Phys. 89, 3307-3314 (2001).

J. Lightw. Technol. (4)

D. J. W. Klunder, M. L. M. Balistreri, F. C. Blom, "Detailed analysis of the intracavity phenomena inside a cylindrical microresonator," J. Lightw. Technol. 20, 519-529 (2002).

M. Hammer, R. Stoffer, "PSTM/NSOM modeling by 2-D quadridirectional eigenmode expansion," J. Lightw. Technol. 23, 1956-1966 (2005).

W. Bogaerts, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightw. Technol. 23, 401-412 (2005).

E. Flück, M. Hammer, A. M. Otter, "Amplitude and phase evolution of optical fields inside periodic photonic structures ," J. Lightw. Technol. 21, 1384-1393 (2003).

Opt. Commun. (2)

H. P. Uranus, H. J. W. M. Hoekstra, E. Van Groesen, "Considerations on material composition for low-loss hollow-core integrated optical waveguides ," Opt. Commun. 260, 577-582 (2006).

M. Hammer, "Quadridirectional eigenmode expansion scheme for 2-D modeling of wave propagation in integrated optics," Opt. Commun. 235, 285-303 (2004).

Opt. Express (6)

Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. (1)

H. Gersen, J. P. Korterik, N. F. van Hulst, L. Kuipers, "Tracking ultrashort pulses through dispersive media: Experiment and theory," Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 68, 026 604/1-026 604/10 (2003).

Phys. Rev. Lett. (1)

A. F. Koenderink, M. Kafesaki, B. C. Buchler, V. Sandoghdar, "Controlling the resonance of a photonic crystal microcavity by a near-field probe," Phys. Rev. Lett. 95, 153 904-1-153 904-4 (2005).

Other (1)

H. Kogelnik, Guided-Wave Optoelectronics (Springer-Verlag, 1990) pp. 31.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.