Abstract

We describe a photonic frequency upconversion by the stimulated Brillouin scattering (SBS)-based frequency tripling method. The frequency tripling and the photonic frequency upconversion are simultaneously obtained by incorporating a dual-electrode electrooptic modulator (EOM) and a single optical source. Each electrode of the dual-electrode EOM is driven by both an intermediate frequency (IF) and a microwave radio frequency (RF) signal, respectively, along with the optical frequency tripling scheme. The dual-electrode EOM generates appropriate optical sidebands, while the IF signal is conveyed by the pump signal. After the successive SBS shifting process, one of the third optical sidebands is amplified by the narrow gain spectrum of SBS. The carrier signal at 32.493 GHz with narrow linewidth, which is amplified by 20 dB while the other signals are suppressed more than 20 dB, is obtained after photodetection. From the simultaneous frequency upconversion and tripling, an IF signal at 1 GHz is upconverted around the 32.493-GHz signal, which is tripled from the RF signal (10.831 GHz). To verify the ability of conveying broadband data that is limited in the previous method based on SBS, the upconversion of a pilot tone at 1 GHz is demonstrated, which means that the data rate exceeds 1 Gb/s. The proposed photonic frequency upconversion shows the spurious free dynamic range of 75.1 Hz<sup>2/3</sup>, which is suitable for a wireless personal communication system adopting the analog fiber-optic link.

© 2007 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. C. Lim, A. Nirmalathas, M. A. Attygalle, D. Novak, R. Waterhouse, "On the merging of millimeter-wave fiber-radio backbone with 25-GHz WDM ring networks ," J. Lightw. Technol. 21, 2203-2210 (2003).
  2. K. Kojucharow, M. Sauer, H. Kaluzni, D. Sommer, F. Poegel, W. Nowak, A. Finger, D. Ferling, "Simultaneous electro-optical upconversion, remote oscillator generation, and air transmission of multiple optical WDM channels for a 60-GHz high-capacity indoor system," IEEE Trans. Microw. Theory Tech. 47, 2249-2256 (1999).
  3. Y.-K. Seo, C.-S. Choi, W.-Y. Choi, "All-optical signal up-conversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 14, 1448-1450 (2002).
  4. C. S. Park, C. K. Oh, C. G. Lee, D. H. Kim, C.-S. Park, "A photonic up-converter for WDM-based radio-over-fiber system using cross-absorption modulation in an EAM," IEEE Photon. Technol. Lett. 17, 1950-1952 (2005).
  5. J. Yu, J. Gu, X. Liu, Z. Jia, G. K. Chang, "Seamless integration of an 8 $\times$ 2.5 Gb/s WDM-PON and radio-over-fiber using all-optical up-conversion based on Raman-assisted FWM," IEEE Photon. Technol. Lett. 17, 1986-1988 (2005).
  6. G. H. Smith, D. Novak, Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems ," Electron. Lett. 33, 74-75 (1997).
  7. J. J. O'Reilly, P. M. Lane, R. Heidemann, R. Hofstetter, "Optical generation of very narrow linewidth millimeter wave signals," Electron. Lett. 28, 2309-2311 (1992).
  8. D. Wake, C. R. Lima, P. A. Davies, "Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser," IEEE Trans. Microw. Theory Tech. 43, 2270-2276 (1995).
  9. R. P. Broun, G. Grosskopf, D. Rohde, F. Schmidt, "Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking," IEEE Photon. Technol. Lett. 10, 728-730 (1998).
  10. L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, A. J. Seeds, "Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals," IEEE Trans. Microw. Theory Tech. 47, 1257-1264 (1999).
  11. L. A. Johansson, A. J. Seeds, "Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lock loop," IEEE Photon. Technol. Lett. 12, 690-692 (2000).
  12. X. S. Yao, "High-quality microwave signal generation by use of Brillouin scattering in optical fibers ," Opt. Lett. 22, 1329-1331 (1997).
  13. Y. Shen, X. Zhang, K. Chen, "Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering ," IEEE Photon. Technol. Lett. 17, 1277-1279 (2005).
  14. T. Schneider, M. Junker, D. Hannover, "Generation of millimetre-wave signals by stimulated Brillouin scattering for radio over fibre systems," Electron. Lett. 40, 1500-1502 (2004).
  15. T. Schneider, M. Junker, D. Hannover, "Investigation of Brillouin scattering in optical fibers for the generation of millimeter waves ," J. Lightw. Technol. 24, 295-304 (2006).
  16. C. S. Park, C. K. Oh, C. G. Lee, C.-S. Park, "Optical frequency tripling method by use of selective amplification of stimulated Brillouin scattering and Brillouin re-injection," Proc. 17th Asia-Pac. Microw. Conf. (2005) pp. 363-365.
  17. C. S. Park, C. K. Oh, C. G. Lee, C.-S. Park, "Multiple RF-carrier generation using the wavelength-dependent stokes shift and selective amplification of stimulated Brillouin scattering," Proc. IEEE Int. Top. Meeting Microw. Photon. (2005) pp. 359-362.
  18. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  19. A. Yeniay, J. M. Delavaux, J. Toulouse, "Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers," J. Lightw. Technol. 20, 1548-1557 (2002).
  20. K. Shiraki, M. Ohashi, M. Tateda, "SBS threshold of a fiber with a Brillouin frequency shift distribution," J. Lightw. Technol. 14, 50-57 (1996).
  21. C. Lim, A. Nirmalathas, D. Novak, R. Waterhouse, G. Yoffe, "Millimeter-wave broadband fiber-wireless system incorporating baseband data transmission over fiber and remote LO delivery," J. Lightw. Technol. 18, 1355-1363 (2000).
  22. J. C. Fan, C. L. Lu, L. G. Kazovsky, "Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links," IEEE Trans. Microw. Theory Tech. 45, 1390-1397 (1997).

2006 (1)

T. Schneider, M. Junker, D. Hannover, "Investigation of Brillouin scattering in optical fibers for the generation of millimeter waves ," J. Lightw. Technol. 24, 295-304 (2006).

2005 (3)

Y. Shen, X. Zhang, K. Chen, "Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering ," IEEE Photon. Technol. Lett. 17, 1277-1279 (2005).

C. S. Park, C. K. Oh, C. G. Lee, D. H. Kim, C.-S. Park, "A photonic up-converter for WDM-based radio-over-fiber system using cross-absorption modulation in an EAM," IEEE Photon. Technol. Lett. 17, 1950-1952 (2005).

J. Yu, J. Gu, X. Liu, Z. Jia, G. K. Chang, "Seamless integration of an 8 $\times$ 2.5 Gb/s WDM-PON and radio-over-fiber using all-optical up-conversion based on Raman-assisted FWM," IEEE Photon. Technol. Lett. 17, 1986-1988 (2005).

2004 (1)

T. Schneider, M. Junker, D. Hannover, "Generation of millimetre-wave signals by stimulated Brillouin scattering for radio over fibre systems," Electron. Lett. 40, 1500-1502 (2004).

2003 (1)

C. Lim, A. Nirmalathas, M. A. Attygalle, D. Novak, R. Waterhouse, "On the merging of millimeter-wave fiber-radio backbone with 25-GHz WDM ring networks ," J. Lightw. Technol. 21, 2203-2210 (2003).

2002 (2)

Y.-K. Seo, C.-S. Choi, W.-Y. Choi, "All-optical signal up-conversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 14, 1448-1450 (2002).

A. Yeniay, J. M. Delavaux, J. Toulouse, "Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers," J. Lightw. Technol. 20, 1548-1557 (2002).

2000 (2)

C. Lim, A. Nirmalathas, D. Novak, R. Waterhouse, G. Yoffe, "Millimeter-wave broadband fiber-wireless system incorporating baseband data transmission over fiber and remote LO delivery," J. Lightw. Technol. 18, 1355-1363 (2000).

L. A. Johansson, A. J. Seeds, "Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lock loop," IEEE Photon. Technol. Lett. 12, 690-692 (2000).

1999 (2)

L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, A. J. Seeds, "Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals," IEEE Trans. Microw. Theory Tech. 47, 1257-1264 (1999).

K. Kojucharow, M. Sauer, H. Kaluzni, D. Sommer, F. Poegel, W. Nowak, A. Finger, D. Ferling, "Simultaneous electro-optical upconversion, remote oscillator generation, and air transmission of multiple optical WDM channels for a 60-GHz high-capacity indoor system," IEEE Trans. Microw. Theory Tech. 47, 2249-2256 (1999).

1998 (1)

R. P. Broun, G. Grosskopf, D. Rohde, F. Schmidt, "Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking," IEEE Photon. Technol. Lett. 10, 728-730 (1998).

1997 (3)

J. C. Fan, C. L. Lu, L. G. Kazovsky, "Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links," IEEE Trans. Microw. Theory Tech. 45, 1390-1397 (1997).

X. S. Yao, "High-quality microwave signal generation by use of Brillouin scattering in optical fibers ," Opt. Lett. 22, 1329-1331 (1997).

G. H. Smith, D. Novak, Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems ," Electron. Lett. 33, 74-75 (1997).

1996 (1)

K. Shiraki, M. Ohashi, M. Tateda, "SBS threshold of a fiber with a Brillouin frequency shift distribution," J. Lightw. Technol. 14, 50-57 (1996).

1995 (1)

D. Wake, C. R. Lima, P. A. Davies, "Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser," IEEE Trans. Microw. Theory Tech. 43, 2270-2276 (1995).

1992 (1)

J. J. O'Reilly, P. M. Lane, R. Heidemann, R. Hofstetter, "Optical generation of very narrow linewidth millimeter wave signals," Electron. Lett. 28, 2309-2311 (1992).

Electron. Lett. (3)

G. H. Smith, D. Novak, Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems ," Electron. Lett. 33, 74-75 (1997).

J. J. O'Reilly, P. M. Lane, R. Heidemann, R. Hofstetter, "Optical generation of very narrow linewidth millimeter wave signals," Electron. Lett. 28, 2309-2311 (1992).

T. Schneider, M. Junker, D. Hannover, "Generation of millimetre-wave signals by stimulated Brillouin scattering for radio over fibre systems," Electron. Lett. 40, 1500-1502 (2004).

IEEE Photon. Technol. Lett. (6)

L. A. Johansson, A. J. Seeds, "Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lock loop," IEEE Photon. Technol. Lett. 12, 690-692 (2000).

Y. Shen, X. Zhang, K. Chen, "Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering ," IEEE Photon. Technol. Lett. 17, 1277-1279 (2005).

R. P. Broun, G. Grosskopf, D. Rohde, F. Schmidt, "Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking," IEEE Photon. Technol. Lett. 10, 728-730 (1998).

Y.-K. Seo, C.-S. Choi, W.-Y. Choi, "All-optical signal up-conversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 14, 1448-1450 (2002).

C. S. Park, C. K. Oh, C. G. Lee, D. H. Kim, C.-S. Park, "A photonic up-converter for WDM-based radio-over-fiber system using cross-absorption modulation in an EAM," IEEE Photon. Technol. Lett. 17, 1950-1952 (2005).

J. Yu, J. Gu, X. Liu, Z. Jia, G. K. Chang, "Seamless integration of an 8 $\times$ 2.5 Gb/s WDM-PON and radio-over-fiber using all-optical up-conversion based on Raman-assisted FWM," IEEE Photon. Technol. Lett. 17, 1986-1988 (2005).

IEEE Trans. Microw. Theory Tech. (4)

K. Kojucharow, M. Sauer, H. Kaluzni, D. Sommer, F. Poegel, W. Nowak, A. Finger, D. Ferling, "Simultaneous electro-optical upconversion, remote oscillator generation, and air transmission of multiple optical WDM channels for a 60-GHz high-capacity indoor system," IEEE Trans. Microw. Theory Tech. 47, 2249-2256 (1999).

L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, A. J. Seeds, "Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals," IEEE Trans. Microw. Theory Tech. 47, 1257-1264 (1999).

D. Wake, C. R. Lima, P. A. Davies, "Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser," IEEE Trans. Microw. Theory Tech. 43, 2270-2276 (1995).

J. C. Fan, C. L. Lu, L. G. Kazovsky, "Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links," IEEE Trans. Microw. Theory Tech. 45, 1390-1397 (1997).

J. Lightw. Technol. (5)

C. Lim, A. Nirmalathas, M. A. Attygalle, D. Novak, R. Waterhouse, "On the merging of millimeter-wave fiber-radio backbone with 25-GHz WDM ring networks ," J. Lightw. Technol. 21, 2203-2210 (2003).

A. Yeniay, J. M. Delavaux, J. Toulouse, "Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers," J. Lightw. Technol. 20, 1548-1557 (2002).

K. Shiraki, M. Ohashi, M. Tateda, "SBS threshold of a fiber with a Brillouin frequency shift distribution," J. Lightw. Technol. 14, 50-57 (1996).

C. Lim, A. Nirmalathas, D. Novak, R. Waterhouse, G. Yoffe, "Millimeter-wave broadband fiber-wireless system incorporating baseband data transmission over fiber and remote LO delivery," J. Lightw. Technol. 18, 1355-1363 (2000).

T. Schneider, M. Junker, D. Hannover, "Investigation of Brillouin scattering in optical fibers for the generation of millimeter waves ," J. Lightw. Technol. 24, 295-304 (2006).

Opt. Lett. (1)

Other (3)

C. S. Park, C. K. Oh, C. G. Lee, C.-S. Park, "Optical frequency tripling method by use of selective amplification of stimulated Brillouin scattering and Brillouin re-injection," Proc. 17th Asia-Pac. Microw. Conf. (2005) pp. 363-365.

C. S. Park, C. K. Oh, C. G. Lee, C.-S. Park, "Multiple RF-carrier generation using the wavelength-dependent stokes shift and selective amplification of stimulated Brillouin scattering," Proc. IEEE Int. Top. Meeting Microw. Photon. (2005) pp. 359-362.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.