Abstract

There is a strong need for a methodology that minimizes total power, which inherently includes device design, for short-distance optical link applications (chip-to-chip or board-to-board communications). We present such a power optimization methodology for a modulator-based optical link, where we do a full 3-D modulator parameter optimization, keeping the power of the entire link in mind. We find for low bit rates (10 Gb/s) that the optimum operational voltage for the modulator was within the supply voltage at the 65-nm technology node. At higher bit rates, the optimum voltage is found to increase and go beyond the stipulated supply voltage. In such a case, a suboptimum operation at the supply voltage incurs a 46% power penalty at 25 Gb/s. Having obtained the optimum modulator design and operation parameters and the corresponding total link power dissipation, we examine the impact of device and system parameters on the optimization. We find that a smaller device capacitance is an efficient solution to push the optimum swing voltage to be within the supply voltage. This is feasible using monolithically integrated Ge-based complementary-metal–oxide–semiconductor-compatible modulator and metal–semiconductor–metal photodetectors.

© 2007 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. International Technology Roadmap for Semiconductors (2003) http://public.itrs.net.
  2. D. A. B. Miller, "Rationale and challenges for optical interconnects to electronic chips," Proc. IEEE 88, 728-749 (2000).
  3. H. M. Ozaktas, D. A. B. Miller, "Limit to the bit-rate capacity of electrical interconnect form the aspect ratio of the system architecture," J. Parallel Distrib. Comput. 41, 42-52 (1997).
  4. C. Svensson, G. D. Dermer, "Time domain modeling of lossy interconnects," IEEE Trans. Adv. Packag. 23, 191-196 (2001).
  5. W. J. Dally, J. Poulton, "Transmitter equalization for 4 Gbps signaling," IEEE Micro 17, 48-56 (1997).
  6. M. Haycock, R. Mooney, "3.2 GHz 6.4 Gb/s per wire signaling in a 0.18 μm CMOS ," Proc. Int. Solid-State Circuits Conf. (2001) pp. 62-63.
  7. R. Mooney, "Scaling methods for electrical interconnects to meet the performance requirements of microprocessor platforms," Proc. 14th Annu. Workshop Interconnects Within High Speed Digital Syst. (2003).
  8. H. Y. Cho, P. Kapur, K. C. Saraswat, "Power comparison between high-speed electrical and optical interconnects for inter-chip communication," J. Lightw. Technol. 22, 2021-2033 (2004).
  9. D. T. Neilson, "Optimization and tolerance analysis QCSE modulator and detectors," IEEE J. Quantum Electron. 33, 1094-1193 (1997).
  10. O. Kibar, D. A. A. Blerkon, C. Fan, S. C. Easner, "Power optimization and technology comparison for digital free-space optoelectronics interconnects ," J. Lightw. Technol. 17, 546-555 (1999).
  11. P. Kapur, R. D. Kekatpure, K. C. Saraswat, "Minimizing power dissipation in optical interconnects at low voltage using optimal modulator design," IEEE Trans. Electron Devices 52, 1713-1721 (2005).
  12. K. W. Goossen, J. E. Cunningham, W. Y. Jan, "Electroabsorption in ultranarrow-barrier GaAs/AlGaAs multiple quantum well modulators ," Appl. Phys. Lett. 64, 1071-1073 (1994).
  13. A. V. Krishnamoorthy, D. A. B. Miller, "Scaling optoelectronic VLSI circuits into the 21st century: A technology roadmap," IEEE J. Sel. Topics Quantum Electron. 2, 55-76 (1996).
  14. C. R. Pollock, Fundamentals of Optoelectronics (Irwin, 1995).
  15. J. J. Morikuni, A. Dharchoudhury, Y. Leblebici, S. M. Kang, "Improvements to the standard theory for photoreceiver noise," J. Lightw. Technol. 12, 1174-1184 (1994).
  16. G. F. Williams, Topics in Lightwave Transmission Systems (Academic, 1991).
  17. H. Y. Cho, P. Kapur, K. C. Saraswat, "Impact of technology node on power comparison for high-speed electrical and optical interconnects ," Proc. Int. Interconnect Tech. Conf. (2005) pp. 177-179.
  18. Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon ," Nature 437, 1334-1336 (2005).
  19. D. Buca, "Metal–germanium–metal ultrafast infrared detectors," J. Appl. Phys. 92, 7599-7605 (2002).
  20. C. O. Chui, A. K. Okyay, K. C. Saraswat, "Effective dark current suppression with asymmetric MSM photodetectors in Group IV semiconductors ," IEEE Photon. Technol. Lett. 15, 1585-1587 (2003).

2005 (2)

P. Kapur, R. D. Kekatpure, K. C. Saraswat, "Minimizing power dissipation in optical interconnects at low voltage using optimal modulator design," IEEE Trans. Electron Devices 52, 1713-1721 (2005).

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon ," Nature 437, 1334-1336 (2005).

2004 (1)

H. Y. Cho, P. Kapur, K. C. Saraswat, "Power comparison between high-speed electrical and optical interconnects for inter-chip communication," J. Lightw. Technol. 22, 2021-2033 (2004).

2003 (1)

C. O. Chui, A. K. Okyay, K. C. Saraswat, "Effective dark current suppression with asymmetric MSM photodetectors in Group IV semiconductors ," IEEE Photon. Technol. Lett. 15, 1585-1587 (2003).

2002 (1)

D. Buca, "Metal–germanium–metal ultrafast infrared detectors," J. Appl. Phys. 92, 7599-7605 (2002).

2001 (1)

C. Svensson, G. D. Dermer, "Time domain modeling of lossy interconnects," IEEE Trans. Adv. Packag. 23, 191-196 (2001).

2000 (1)

D. A. B. Miller, "Rationale and challenges for optical interconnects to electronic chips," Proc. IEEE 88, 728-749 (2000).

1999 (1)

O. Kibar, D. A. A. Blerkon, C. Fan, S. C. Easner, "Power optimization and technology comparison for digital free-space optoelectronics interconnects ," J. Lightw. Technol. 17, 546-555 (1999).

1997 (3)

H. M. Ozaktas, D. A. B. Miller, "Limit to the bit-rate capacity of electrical interconnect form the aspect ratio of the system architecture," J. Parallel Distrib. Comput. 41, 42-52 (1997).

W. J. Dally, J. Poulton, "Transmitter equalization for 4 Gbps signaling," IEEE Micro 17, 48-56 (1997).

D. T. Neilson, "Optimization and tolerance analysis QCSE modulator and detectors," IEEE J. Quantum Electron. 33, 1094-1193 (1997).

1996 (1)

A. V. Krishnamoorthy, D. A. B. Miller, "Scaling optoelectronic VLSI circuits into the 21st century: A technology roadmap," IEEE J. Sel. Topics Quantum Electron. 2, 55-76 (1996).

1994 (2)

J. J. Morikuni, A. Dharchoudhury, Y. Leblebici, S. M. Kang, "Improvements to the standard theory for photoreceiver noise," J. Lightw. Technol. 12, 1174-1184 (1994).

K. W. Goossen, J. E. Cunningham, W. Y. Jan, "Electroabsorption in ultranarrow-barrier GaAs/AlGaAs multiple quantum well modulators ," Appl. Phys. Lett. 64, 1071-1073 (1994).

Appl. Phys. Lett. (1)

K. W. Goossen, J. E. Cunningham, W. Y. Jan, "Electroabsorption in ultranarrow-barrier GaAs/AlGaAs multiple quantum well modulators ," Appl. Phys. Lett. 64, 1071-1073 (1994).

IEEE J. Quantum Electron. (1)

D. T. Neilson, "Optimization and tolerance analysis QCSE modulator and detectors," IEEE J. Quantum Electron. 33, 1094-1193 (1997).

IEEE J. Sel. Topics Quantum Electron. (1)

A. V. Krishnamoorthy, D. A. B. Miller, "Scaling optoelectronic VLSI circuits into the 21st century: A technology roadmap," IEEE J. Sel. Topics Quantum Electron. 2, 55-76 (1996).

IEEE Micro (1)

W. J. Dally, J. Poulton, "Transmitter equalization for 4 Gbps signaling," IEEE Micro 17, 48-56 (1997).

IEEE Photon. Technol. Lett. (1)

C. O. Chui, A. K. Okyay, K. C. Saraswat, "Effective dark current suppression with asymmetric MSM photodetectors in Group IV semiconductors ," IEEE Photon. Technol. Lett. 15, 1585-1587 (2003).

IEEE Trans. Adv. Packag. (1)

C. Svensson, G. D. Dermer, "Time domain modeling of lossy interconnects," IEEE Trans. Adv. Packag. 23, 191-196 (2001).

IEEE Trans. Electron Devices (1)

P. Kapur, R. D. Kekatpure, K. C. Saraswat, "Minimizing power dissipation in optical interconnects at low voltage using optimal modulator design," IEEE Trans. Electron Devices 52, 1713-1721 (2005).

J. Appl. Phys. (1)

D. Buca, "Metal–germanium–metal ultrafast infrared detectors," J. Appl. Phys. 92, 7599-7605 (2002).

J. Lightw. Technol. (3)

J. J. Morikuni, A. Dharchoudhury, Y. Leblebici, S. M. Kang, "Improvements to the standard theory for photoreceiver noise," J. Lightw. Technol. 12, 1174-1184 (1994).

H. Y. Cho, P. Kapur, K. C. Saraswat, "Power comparison between high-speed electrical and optical interconnects for inter-chip communication," J. Lightw. Technol. 22, 2021-2033 (2004).

O. Kibar, D. A. A. Blerkon, C. Fan, S. C. Easner, "Power optimization and technology comparison for digital free-space optoelectronics interconnects ," J. Lightw. Technol. 17, 546-555 (1999).

J. Parallel Distrib. Comput. (1)

H. M. Ozaktas, D. A. B. Miller, "Limit to the bit-rate capacity of electrical interconnect form the aspect ratio of the system architecture," J. Parallel Distrib. Comput. 41, 42-52 (1997).

Nature (1)

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon ," Nature 437, 1334-1336 (2005).

Proc. IEEE (1)

D. A. B. Miller, "Rationale and challenges for optical interconnects to electronic chips," Proc. IEEE 88, 728-749 (2000).

Other (6)

International Technology Roadmap for Semiconductors (2003) http://public.itrs.net.

M. Haycock, R. Mooney, "3.2 GHz 6.4 Gb/s per wire signaling in a 0.18 μm CMOS ," Proc. Int. Solid-State Circuits Conf. (2001) pp. 62-63.

R. Mooney, "Scaling methods for electrical interconnects to meet the performance requirements of microprocessor platforms," Proc. 14th Annu. Workshop Interconnects Within High Speed Digital Syst. (2003).

G. F. Williams, Topics in Lightwave Transmission Systems (Academic, 1991).

H. Y. Cho, P. Kapur, K. C. Saraswat, "Impact of technology node on power comparison for high-speed electrical and optical interconnects ," Proc. Int. Interconnect Tech. Conf. (2005) pp. 177-179.

C. R. Pollock, Fundamentals of Optoelectronics (Irwin, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.