Abstract

In this paper, a new method is presented for calculating dispersion relations for waves with wavelengths of the order of hundreds of nanometers propagating in rectangular waveguides with imperfectly conducting walls.

© 2007 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. T. W. Ebbesen, H. E. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
  2. N. W. Ashcroft, N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1976).
  3. L. Novotny, C. Hafner, "Light propagation in a cylindrical waveguide with a complex metallic dielectric function ," Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 50, 4094-4106 (1994).
  4. B. Prade, J. Y. Vinet, "Guided optical waves in fibers with negative dielectric constant," J. Lightw. Technol. 12, 6-18 (1994).
  5. H. Shin, P. B. Catrysse, S. Fan, "Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes," Phys. Rev. B, Condens. Matter 72, 085436.1-085436.7 (2005).
  6. P. B. Catrysse, H. Shin, S. Fan, "Propagating modes in subwavelength cylindrical holes," J. Vac. Sci. Technol. B, Microelectron. Process. Phenom. 23, 2675-2678 (2005).
  7. E. A. Marcatili, "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell Syst. Tech. J. 48, 2071-2103 (1969).
  8. J. E. Goell, "A circular-harmonic computer analysis of rectangular dielectric waveguides," Bell Syst. Tech. J. 48, 2133-2160 (1969).
  9. F. Ladouceur, J. D. Love, I. M. Skinner, "Single mode square- and rectangular-core waveguides," Proc. Inst. Electr. Eng.—J 138, 253-260 (1991).
  10. C. H. Henry, B. K. Verbeek, "Solution of the scalar wave equation for arbitrarily shaped dielectric waveguides by two-dimensional Fourier analysis," J. Lightw. Technol. 7, 308-313 (1994).

2005 (2)

H. Shin, P. B. Catrysse, S. Fan, "Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes," Phys. Rev. B, Condens. Matter 72, 085436.1-085436.7 (2005).

P. B. Catrysse, H. Shin, S. Fan, "Propagating modes in subwavelength cylindrical holes," J. Vac. Sci. Technol. B, Microelectron. Process. Phenom. 23, 2675-2678 (2005).

1998 (1)

T. W. Ebbesen, H. E. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).

1994 (3)

L. Novotny, C. Hafner, "Light propagation in a cylindrical waveguide with a complex metallic dielectric function ," Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 50, 4094-4106 (1994).

B. Prade, J. Y. Vinet, "Guided optical waves in fibers with negative dielectric constant," J. Lightw. Technol. 12, 6-18 (1994).

C. H. Henry, B. K. Verbeek, "Solution of the scalar wave equation for arbitrarily shaped dielectric waveguides by two-dimensional Fourier analysis," J. Lightw. Technol. 7, 308-313 (1994).

1991 (1)

F. Ladouceur, J. D. Love, I. M. Skinner, "Single mode square- and rectangular-core waveguides," Proc. Inst. Electr. Eng.—J 138, 253-260 (1991).

1969 (2)

E. A. Marcatili, "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell Syst. Tech. J. 48, 2071-2103 (1969).

J. E. Goell, "A circular-harmonic computer analysis of rectangular dielectric waveguides," Bell Syst. Tech. J. 48, 2133-2160 (1969).

Bell Syst. Tech. J. (2)

E. A. Marcatili, "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell Syst. Tech. J. 48, 2071-2103 (1969).

J. E. Goell, "A circular-harmonic computer analysis of rectangular dielectric waveguides," Bell Syst. Tech. J. 48, 2133-2160 (1969).

J. Lightw. Technol. (2)

B. Prade, J. Y. Vinet, "Guided optical waves in fibers with negative dielectric constant," J. Lightw. Technol. 12, 6-18 (1994).

C. H. Henry, B. K. Verbeek, "Solution of the scalar wave equation for arbitrarily shaped dielectric waveguides by two-dimensional Fourier analysis," J. Lightw. Technol. 7, 308-313 (1994).

J. Vac. Sci. Technol. B, Microelectron. Process. Phenom. (1)

P. B. Catrysse, H. Shin, S. Fan, "Propagating modes in subwavelength cylindrical holes," J. Vac. Sci. Technol. B, Microelectron. Process. Phenom. 23, 2675-2678 (2005).

Nature (1)

T. W. Ebbesen, H. E. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).

Phys. Rev. B, Condens. Matter (1)

H. Shin, P. B. Catrysse, S. Fan, "Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes," Phys. Rev. B, Condens. Matter 72, 085436.1-085436.7 (2005).

Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. (1)

L. Novotny, C. Hafner, "Light propagation in a cylindrical waveguide with a complex metallic dielectric function ," Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 50, 4094-4106 (1994).

Proc. Inst. Electr. Eng.—J (1)

F. Ladouceur, J. D. Love, I. M. Skinner, "Single mode square- and rectangular-core waveguides," Proc. Inst. Electr. Eng.—J 138, 253-260 (1991).

Other (1)

N. W. Ashcroft, N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.