Abstract

Data parallelization by means of optical multiple-input multiple-output (MIMO) transmission over dispersive multimode fiber (MMF), with a high degree of modal coupling but not accounting for intermodal dispersion, is investigated by developing an analytical model for direct detection of MMF MIMO frequency-flat transmission with mutually incoherent sources. The MIMO channel performance is derived in terms of a new formulation of a channel matrix for modal group powers accounting, for the first time, for modal coupling. For fixed aggregate signaling rate and power budget, for uncoded bit streams, increasing the number of output detectors improves the bit error ratio (BER)—similarly to wireless MIMO. However, contrary to wireless MIMO, increasing the number of input ports actually yields a BER penalty, which is traceable to the quadratic nature of photodetection. We finally establish the feasibility of enhancing the aggregate bit rate using multiple inputs in the case that the individual single-input-single-output channels are band limited, e.g., given optical data sources each at 2 Gb/s, it is possible to attain a 12-Gb/s signaling rate over several hundreds of meters of MMF at 10<sup>-10</sup> BER, by utilizing six such inputs into the MIMO system, while incurring just a small average power penalty of approximately 2 dB/channel. The current model assumes strong intermodal coupling and neglects ISI influence over distances of up to hundreds of meters at gigabit rates, providing a first step in the optical MIMO analysis. On the other hand, similar scenario is practically met for shorter distances (up to 100 m) for the novel types of plastic optical fibers.

© 2007 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. M. J. Hackert, Characterizing Multimode Fiber Bandwidth for Gigabit Ethernet Applications http://www.corning.com/docs/opticalfiber/wp4062_08-01.pdf Corning white paper WP4062.
  2. X. Shen, J. M. Kahn, M. A. Horowitz, "Compensation for multimode fiber dispersion by adaptive optics," Opt. Lett. 30, 2985-2987 (2005).
  3. U. Levy, H. Kobrinsky, A. Friesem, "Angular multiplexing for multichannel communication in a single fiber," IEEE J. Quantum Electron. QE-17, 2215-2224 (1981).
  4. H. R. Stuart, "Dispersive multiplexing in multimode optical fiber," Science 289, 281-283 (2000).
  5. S. G. Leon-Saval, T. A. Birks, "Multimode fiber devices with single-mode performances," Opt. Lett. 30, 2545-2547 (2005).
  6. Y. Yadin, M. Orenstein, "Parallel optical interconnects over multimode waveguide," J. Lightw. Technol. 24, 380-386 (2006).
  7. R. C. J. Hsu, A. Tarighat, A. Shah, A. H. Sayed, "Capacity enhancement in coherent optical MIMO (COMIMO) multimode fiber links," IEEE Commun. Lett. 10, 195-197 (2006).
  8. D. Gloge, "Impulse response of clad optical multimode fibers," Bell Syst. Tech. J. 52, 801-816 (1973).
  9. R. F. Shi, C. Koeppen, G. Jiang, J. Wang, A. F. Garito, "Origin of high bandwidth performance of graded-index plastic optical fibers," Appl. Phys. Lett. 71, 3625-3627 (1997).
  10. J. Zubia, G. Durana, G. Aldabaldetreku, J. Arrue, M. A. Losada, M. Lopez-Higuera, "New method to calculate mode conversion coefficients in SI multimode optical fibers ," J. Lightw. Technol. 21, 776-781 (2003).
  11. M. Greenberg, M. Nazarathy, M. Orenstein, "Data parallelization by optical MIMO transmission over multi-mode fiber with inter-modal coupling ," Proc. LEOS WX (2006) pp. 641-642.
  12. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1972).
  13. E. G. Rawson, J. W. Goodman, R. E. Norton, "Analysis and measurement of the modal-noise probability distribution for a step-index optical fiber," Opt. Lett. 5, 357-358 (1980).
  14. J. W. Goodman, J. C. Dainty, Laser Speckle and Related Phenomena New YorkSpringer-Verlag (Springer-Verlag, 1975)New York.
  15. J. W. Goodman, Statistical Optics (Wiley, 1985).
  16. J. W. Goodman, E. G. Rawson, "Statistics of modal noise in fibers: A case of constrained speckle," Opt. Lett. 6, 324-326 (1981).
  17. D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).
  18. W. A. Gambling, D. N. Payne, H. Matsumura, "Mode conversion coefficients in optical fibers," Appl. Opt. 14, 1538-1542 (1875).
  19. http://www.chromisfiber.com/pdf/GigaPOF50SR.pdf.
  20. Y. Yadin, M. Orenstein, Parallel Optical Interconnects Over Multimode Waveguides Using Mutually Coherent Channels and Direct Detection submitted for publication.
  21. R. Holzlohner, C. R. Menyuk, "Use of multicanonical Monte Carlo simulations to obtain accurate bit error rates in optical communications systems," Opt. Lett. 28, 1894-1896 (2003).
  22. P. Pepeljugoski, J. A. Tiero, A. Risteski, S. K. Reynolds, L. Schares, "Performance of simulated annealing algorithm in equalized multimode fiber links with linear equalizers," J. Lightw. Technol. 24, 4235-4249 (2006).
  23. E. Alon, V. Stojanovic, J. M. Kahn, S. Boyd, M. Horowitz, "Equalization of modal dispersion in multimode fiber using spatial light modulators," Proc. IEEE GL Globecom Conf. (2004) pp. 1023-1029.
  24. P. Pepeljugoski, S. E. Golowich, A. J. Ritger, P. Kolesar, A. Risteski, "Modeling and simulation of next-generation multimode fiber links," J. Lightw. Technol. 21, 1242-1255 (2003).

2006 (3)

Y. Yadin, M. Orenstein, "Parallel optical interconnects over multimode waveguide," J. Lightw. Technol. 24, 380-386 (2006).

R. C. J. Hsu, A. Tarighat, A. Shah, A. H. Sayed, "Capacity enhancement in coherent optical MIMO (COMIMO) multimode fiber links," IEEE Commun. Lett. 10, 195-197 (2006).

P. Pepeljugoski, J. A. Tiero, A. Risteski, S. K. Reynolds, L. Schares, "Performance of simulated annealing algorithm in equalized multimode fiber links with linear equalizers," J. Lightw. Technol. 24, 4235-4249 (2006).

2005 (2)

2003 (3)

R. Holzlohner, C. R. Menyuk, "Use of multicanonical Monte Carlo simulations to obtain accurate bit error rates in optical communications systems," Opt. Lett. 28, 1894-1896 (2003).

P. Pepeljugoski, S. E. Golowich, A. J. Ritger, P. Kolesar, A. Risteski, "Modeling and simulation of next-generation multimode fiber links," J. Lightw. Technol. 21, 1242-1255 (2003).

J. Zubia, G. Durana, G. Aldabaldetreku, J. Arrue, M. A. Losada, M. Lopez-Higuera, "New method to calculate mode conversion coefficients in SI multimode optical fibers ," J. Lightw. Technol. 21, 776-781 (2003).

2000 (1)

H. R. Stuart, "Dispersive multiplexing in multimode optical fiber," Science 289, 281-283 (2000).

1997 (1)

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, A. F. Garito, "Origin of high bandwidth performance of graded-index plastic optical fibers," Appl. Phys. Lett. 71, 3625-3627 (1997).

1981 (2)

J. W. Goodman, E. G. Rawson, "Statistics of modal noise in fibers: A case of constrained speckle," Opt. Lett. 6, 324-326 (1981).

U. Levy, H. Kobrinsky, A. Friesem, "Angular multiplexing for multichannel communication in a single fiber," IEEE J. Quantum Electron. QE-17, 2215-2224 (1981).

1980 (1)

1973 (1)

D. Gloge, "Impulse response of clad optical multimode fibers," Bell Syst. Tech. J. 52, 801-816 (1973).

1972 (1)

D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).

1875 (1)

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, A. F. Garito, "Origin of high bandwidth performance of graded-index plastic optical fibers," Appl. Phys. Lett. 71, 3625-3627 (1997).

Bell Syst. Tech. J. (2)

D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).

D. Gloge, "Impulse response of clad optical multimode fibers," Bell Syst. Tech. J. 52, 801-816 (1973).

IEEE Commun. Lett. (1)

R. C. J. Hsu, A. Tarighat, A. Shah, A. H. Sayed, "Capacity enhancement in coherent optical MIMO (COMIMO) multimode fiber links," IEEE Commun. Lett. 10, 195-197 (2006).

IEEE J. Quantum Electron. (1)

U. Levy, H. Kobrinsky, A. Friesem, "Angular multiplexing for multichannel communication in a single fiber," IEEE J. Quantum Electron. QE-17, 2215-2224 (1981).

J. Lightw. Technol. (4)

Y. Yadin, M. Orenstein, "Parallel optical interconnects over multimode waveguide," J. Lightw. Technol. 24, 380-386 (2006).

J. Zubia, G. Durana, G. Aldabaldetreku, J. Arrue, M. A. Losada, M. Lopez-Higuera, "New method to calculate mode conversion coefficients in SI multimode optical fibers ," J. Lightw. Technol. 21, 776-781 (2003).

P. Pepeljugoski, J. A. Tiero, A. Risteski, S. K. Reynolds, L. Schares, "Performance of simulated annealing algorithm in equalized multimode fiber links with linear equalizers," J. Lightw. Technol. 24, 4235-4249 (2006).

P. Pepeljugoski, S. E. Golowich, A. J. Ritger, P. Kolesar, A. Risteski, "Modeling and simulation of next-generation multimode fiber links," J. Lightw. Technol. 21, 1242-1255 (2003).

Opt. Lett. (5)

Science (1)

H. R. Stuart, "Dispersive multiplexing in multimode optical fiber," Science 289, 281-283 (2000).

Other (8)

M. J. Hackert, Characterizing Multimode Fiber Bandwidth for Gigabit Ethernet Applications http://www.corning.com/docs/opticalfiber/wp4062_08-01.pdf Corning white paper WP4062.

J. W. Goodman, J. C. Dainty, Laser Speckle and Related Phenomena New YorkSpringer-Verlag (Springer-Verlag, 1975)New York.

J. W. Goodman, Statistical Optics (Wiley, 1985).

M. Greenberg, M. Nazarathy, M. Orenstein, "Data parallelization by optical MIMO transmission over multi-mode fiber with inter-modal coupling ," Proc. LEOS WX (2006) pp. 641-642.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1972).

E. Alon, V. Stojanovic, J. M. Kahn, S. Boyd, M. Horowitz, "Equalization of modal dispersion in multimode fiber using spatial light modulators," Proc. IEEE GL Globecom Conf. (2004) pp. 1023-1029.

http://www.chromisfiber.com/pdf/GigaPOF50SR.pdf.

Y. Yadin, M. Orenstein, Parallel Optical Interconnects Over Multimode Waveguides Using Mutually Coherent Channels and Direct Detection submitted for publication.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.