Abstract

This paper describes the increase in the extinction ratio (ER) of an optical signal achieved by using a semiconductor saturable absorption device (SAD). We investigate a method for optimizing the SAD length in order to increase the ER, where we deal with the SAD characteristics phenomenologically. We then undertake a theoretical analysis of the bit error rate dependence on the ER increase. We clarify experimentally that by using a SAD with an effective length of 350 μm, the ER of the output optical signals from an uncooled directly modulated light source can be increased from 6.8 to 8.2 dB and, thus, conform to the Synchronous Optical NETwork/synchronous digital hierarchy standard.

© 2007 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. T. Tanaka, Y. Hibino, T. Hashimoto, R. Kasahara, M. Abe, Y. Tohmori, "Hybrid-integrated external-cavity laser without temperature-dependent mode hopping," J. Lightw. Technol. 20, 1730-1739 (2002).
  2. T. Sato, "Suppression of mode-hop induced optical signal deterioration in an external cavity diode laser with a fiber Bragg grating for uncooled WDM applications," Appl. Opt. 42, 3500-3504 (2003).
  3. W. Schmidt, F. P. Schafer, "Self-mode-locking of dye-lasers with saturated absorbers," Phys. Lett. A 26, 558-559 (1968).
  4. B. C. Barnett, "High-power erbium-doped fiber laser mode locked semiconductor saturable absorber," Opt. Lett. 20, 471-473 (1995).
  5. S. Y. Set, "Ultrafast fiber pulsed lasers incorporating carbon nanotubes," IEEE J. Sel. Topics Quantum Electron. 10, 137-146 (2004).
  6. S. Yamashita, "5-GHz pulsed fiber Fabry–Perot laser mode-locked using carbon nanotubes," IEEE Photon. Technol. Lett. 17, 750-752 (2005).
  7. E. P. Ippen, Picosecond Phenomena II (Springer-Verlag, 1980) pp. 21-25.
  8. A. M. Fox, "Quantum well carrier sweep out: Relation to electroabsorption and exciton saturation ," IEEE J. Quantum Electron. 27, 2281-2295 (1991).
  9. U. Keller, "Semiconductor saturable absorber mirrors for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Topics Quantum Electron. 2, 435-453 (1996).
  10. D. Rouvillain, "Optical 2R regenerator based on passive saturable absorber for 40 Gb/s WDM long-haul transmissions ," Electron. Lett. 38, 1113-1114 (2002).
  11. M. Pantouvaki, "10-Gb/s all-optical 2R regeneration using an MQW Fabry–Perot saturable absorber and a nonlinear fiber," IEEE Photon. Technol. Lett. 16, 617-619 (2004).
  12. S. D. Personick, "Receiver design for digital fiber optic communication systems—I," J. Bell Syst. Technol. 52, 843-874 (1973).
  13. W. Schockley, "Hot electron in germanium and Ohm's law," J. Bell Sys. Technol. 30, 990 (1951).
  14. K. G. McKay, K. B. McAfee, "Electron multiplication in silicon and germanium," Phys. Rev. 91, 1079-1084 (1953).
  15. N. A. Olsson, "Lightwave systems with optical amplifiers," J. Lightw. Technol. 7, 1071-1082 (1989).
  16. IEEE Standard for Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements Part3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Control (MAC) Parameters, Physical Layers, and Management Parameters for 10 Gb/s Operation IEEE Standard, 802.3 ae (2002).
  17. IEEE Standard for Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements Part3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications Amendment: Media Access Control Parameters, Physical Layers, and Management Parameters for Subscriber Access Networks IEEE Standard, 802.3 ah (2004).
  18. T. H. Wood, "Multiple quantum well (MQW) waveguide modulators," J. Lightw. Technol. 6, 743-757 (1988).
  19. T. H. Wood, T. Y. Chang, J. Z. Pastalan, C. A. B. Jun, N. J. Sauer, B. C. Johnson, "Increased optical saturation intensities in GaInAs multiple quantum wells by the use of AlGaInAs Barriers," Electron. Lett. 27, 257-259 (1991).

2005 (1)

S. Yamashita, "5-GHz pulsed fiber Fabry–Perot laser mode-locked using carbon nanotubes," IEEE Photon. Technol. Lett. 17, 750-752 (2005).

2004 (2)

S. Y. Set, "Ultrafast fiber pulsed lasers incorporating carbon nanotubes," IEEE J. Sel. Topics Quantum Electron. 10, 137-146 (2004).

M. Pantouvaki, "10-Gb/s all-optical 2R regeneration using an MQW Fabry–Perot saturable absorber and a nonlinear fiber," IEEE Photon. Technol. Lett. 16, 617-619 (2004).

2003 (1)

2002 (2)

T. Tanaka, Y. Hibino, T. Hashimoto, R. Kasahara, M. Abe, Y. Tohmori, "Hybrid-integrated external-cavity laser without temperature-dependent mode hopping," J. Lightw. Technol. 20, 1730-1739 (2002).

D. Rouvillain, "Optical 2R regenerator based on passive saturable absorber for 40 Gb/s WDM long-haul transmissions ," Electron. Lett. 38, 1113-1114 (2002).

1996 (1)

U. Keller, "Semiconductor saturable absorber mirrors for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Topics Quantum Electron. 2, 435-453 (1996).

1995 (1)

1991 (2)

T. H. Wood, T. Y. Chang, J. Z. Pastalan, C. A. B. Jun, N. J. Sauer, B. C. Johnson, "Increased optical saturation intensities in GaInAs multiple quantum wells by the use of AlGaInAs Barriers," Electron. Lett. 27, 257-259 (1991).

A. M. Fox, "Quantum well carrier sweep out: Relation to electroabsorption and exciton saturation ," IEEE J. Quantum Electron. 27, 2281-2295 (1991).

1989 (1)

N. A. Olsson, "Lightwave systems with optical amplifiers," J. Lightw. Technol. 7, 1071-1082 (1989).

1988 (1)

T. H. Wood, "Multiple quantum well (MQW) waveguide modulators," J. Lightw. Technol. 6, 743-757 (1988).

1973 (1)

S. D. Personick, "Receiver design for digital fiber optic communication systems—I," J. Bell Syst. Technol. 52, 843-874 (1973).

1968 (1)

W. Schmidt, F. P. Schafer, "Self-mode-locking of dye-lasers with saturated absorbers," Phys. Lett. A 26, 558-559 (1968).

1953 (1)

K. G. McKay, K. B. McAfee, "Electron multiplication in silicon and germanium," Phys. Rev. 91, 1079-1084 (1953).

1951 (1)

W. Schockley, "Hot electron in germanium and Ohm's law," J. Bell Sys. Technol. 30, 990 (1951).

Appl. Opt. (1)

Electron. Lett. (2)

D. Rouvillain, "Optical 2R regenerator based on passive saturable absorber for 40 Gb/s WDM long-haul transmissions ," Electron. Lett. 38, 1113-1114 (2002).

T. H. Wood, T. Y. Chang, J. Z. Pastalan, C. A. B. Jun, N. J. Sauer, B. C. Johnson, "Increased optical saturation intensities in GaInAs multiple quantum wells by the use of AlGaInAs Barriers," Electron. Lett. 27, 257-259 (1991).

IEEE J. Quantum Electron. (1)

A. M. Fox, "Quantum well carrier sweep out: Relation to electroabsorption and exciton saturation ," IEEE J. Quantum Electron. 27, 2281-2295 (1991).

IEEE J. Sel. Topics Quantum Electron. (2)

U. Keller, "Semiconductor saturable absorber mirrors for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Topics Quantum Electron. 2, 435-453 (1996).

S. Y. Set, "Ultrafast fiber pulsed lasers incorporating carbon nanotubes," IEEE J. Sel. Topics Quantum Electron. 10, 137-146 (2004).

IEEE Photon. Technol. Lett. (2)

S. Yamashita, "5-GHz pulsed fiber Fabry–Perot laser mode-locked using carbon nanotubes," IEEE Photon. Technol. Lett. 17, 750-752 (2005).

M. Pantouvaki, "10-Gb/s all-optical 2R regeneration using an MQW Fabry–Perot saturable absorber and a nonlinear fiber," IEEE Photon. Technol. Lett. 16, 617-619 (2004).

J. Bell Sys. Technol. (1)

W. Schockley, "Hot electron in germanium and Ohm's law," J. Bell Sys. Technol. 30, 990 (1951).

J. Bell Syst. Technol. (1)

S. D. Personick, "Receiver design for digital fiber optic communication systems—I," J. Bell Syst. Technol. 52, 843-874 (1973).

J. Lightw. Technol. (3)

T. H. Wood, "Multiple quantum well (MQW) waveguide modulators," J. Lightw. Technol. 6, 743-757 (1988).

N. A. Olsson, "Lightwave systems with optical amplifiers," J. Lightw. Technol. 7, 1071-1082 (1989).

T. Tanaka, Y. Hibino, T. Hashimoto, R. Kasahara, M. Abe, Y. Tohmori, "Hybrid-integrated external-cavity laser without temperature-dependent mode hopping," J. Lightw. Technol. 20, 1730-1739 (2002).

Opt. Lett. (1)

Phys. Lett. A (1)

W. Schmidt, F. P. Schafer, "Self-mode-locking of dye-lasers with saturated absorbers," Phys. Lett. A 26, 558-559 (1968).

Phys. Rev. (1)

K. G. McKay, K. B. McAfee, "Electron multiplication in silicon and germanium," Phys. Rev. 91, 1079-1084 (1953).

Other (3)

IEEE Standard for Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements Part3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Control (MAC) Parameters, Physical Layers, and Management Parameters for 10 Gb/s Operation IEEE Standard, 802.3 ae (2002).

IEEE Standard for Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements Part3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications Amendment: Media Access Control Parameters, Physical Layers, and Management Parameters for Subscriber Access Networks IEEE Standard, 802.3 ah (2004).

E. P. Ippen, Picosecond Phenomena II (Springer-Verlag, 1980) pp. 21-25.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.