Abstract

An optical fiber taper is fabricated by heating and stretching a fiber. The resulting taper shape is important as it strongly affects optical performance. In this paper, the tapering process of solid optical fiber is modeled and analyzed under several heating and stretching conditions. The fiber material is assumed to be of non-Newtonian inelastic type. The results show that for a given heating profile, the shape of a tapered fiber is independent of the material properties and the stretching conditions applied at the fiber ends, and a section of uniform waist can be formed as long as the extensional deformation rate in a section of the heating zone is position-independent. Different shapes of fiber tapers can only be achieved by using different heating profiles. Therefore, spatially uniform heating of the fiber within the heating zone is of critical importance for producing a taper with a uniform waist. This is particularly true if the fiber material has a low deformation temperature.

© 2007 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. G. E. Town, J. T. Lizier, "Tapered holey fibers for spot size and numerical aperture conversion," Opt. Lett. 26, 1042-1044 (2001).
  2. T. A. Birks, G. Kakarantzas, P. St. J. Russell, "All-fibre devices based on tapered fibres," Opt. Fiber Commun. Conf., Los Angeles, CA (2004) Paper ThK2.
  3. J. Villatoro, A. Diez, J. L. Cruz, M. V. Andres, "Highly sensitive optical hydrogen sensor using circular Pd-coated single mode tapered fibre ," Electron. Lett. 37, 1011-1012 (2001).
  4. R. P. Kenny, T. A. Birks, K. P. Oakley, "Control of optical fiber taper shape," Electron. Lett. 27, 1654-1656 (1991).
  5. T. A. Birks, Y. W. Li, "The shape of fiber tapers," J. Lightw. Technol. 10, 432-438 (1992).
  6. J. Dewynne, J. R. Ockendon, P. Wilmott, "On a mathematical model for fibre tapering," SIAM J. Appl. Math. 49, 983-990 (1989).
  7. J. D. Love, W. M. Henry, W. J. Stewards, R. J. Black, S. Lacroix, F. Ghontier, "Tapered single-mode fibres and devices. I. Adiabaticity criteria," Proc. Inst. Electr. Eng.—Optoelectron. 138, 343-354 (1991).
  8. S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, M. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864-2869 (2004).
  9. S. C. Xue, M. van Eijkelenborg, G. W. Barton, "Role of material properties and pulling conditions in tapering micro-capillary fibres ," Proc. 15th Int. Plastic Opt. Fibre Conf. (2006) pp. 307-313.
  10. Fluent User's Manual 6.2Fluent Inc. (2003) Lebanon, NH.
  11. F. Bilodeau, K. O. Hill, S. Faucher, D. C. Johnson, "Low-loss highly overcoupled fused couplers: Fabrication and sensitivity to external pressure ," J. Lightw. Technol. 6, 1476-1482 (1988).
  12. P. Hambley, M. A. van Eijkelenborg, G. Barton, G. Henry, "Strategies and initial results for microstructured polymer optical fibre tapers," Proc. 14th Int. Plastic Opt. Fibre Conf. (2005) pp. 111-113.
  13. C. Jiang, M. G. Kuzyk, J. Ding, W. Johns, D. J. Welker, "Fabrication and mechanical behaviour of dye-doped polymer optical fibre," J. Appl. Phys. 92, 4-12 (2002).
  14. S. C. Xue, R. I. Tanner, G. Barton, R. Lwin, M. C. J. Large, L. Poladian, "Fabrication of microstructured optical fibres, Part I: Problem formulation and numerical modeling of transient draw process," J. Lightw. Technol. 23, 2245-2254 (2005).
  15. R. B. Bird, R. C. Armstrong, O. Hassage, Dynamics of Polymeric Liquids (Wiley, 1977).
  16. S. C. Xue, C. J. Large, G. W. Barton, R. I. Tanner, L. Poladian, R. Lwin, "Role of material properties and drawing conditions in the fabrication of microstructured optical fibres," J. Lightw. Technol. 24, 853-860 (2006).

2006 (1)

S. C. Xue, C. J. Large, G. W. Barton, R. I. Tanner, L. Poladian, R. Lwin, "Role of material properties and drawing conditions in the fabrication of microstructured optical fibres," J. Lightw. Technol. 24, 853-860 (2006).

2005 (1)

S. C. Xue, R. I. Tanner, G. Barton, R. Lwin, M. C. J. Large, L. Poladian, "Fabrication of microstructured optical fibres, Part I: Problem formulation and numerical modeling of transient draw process," J. Lightw. Technol. 23, 2245-2254 (2005).

2004 (1)

2002 (1)

C. Jiang, M. G. Kuzyk, J. Ding, W. Johns, D. J. Welker, "Fabrication and mechanical behaviour of dye-doped polymer optical fibre," J. Appl. Phys. 92, 4-12 (2002).

2001 (2)

G. E. Town, J. T. Lizier, "Tapered holey fibers for spot size and numerical aperture conversion," Opt. Lett. 26, 1042-1044 (2001).

J. Villatoro, A. Diez, J. L. Cruz, M. V. Andres, "Highly sensitive optical hydrogen sensor using circular Pd-coated single mode tapered fibre ," Electron. Lett. 37, 1011-1012 (2001).

1992 (1)

T. A. Birks, Y. W. Li, "The shape of fiber tapers," J. Lightw. Technol. 10, 432-438 (1992).

1991 (2)

R. P. Kenny, T. A. Birks, K. P. Oakley, "Control of optical fiber taper shape," Electron. Lett. 27, 1654-1656 (1991).

J. D. Love, W. M. Henry, W. J. Stewards, R. J. Black, S. Lacroix, F. Ghontier, "Tapered single-mode fibres and devices. I. Adiabaticity criteria," Proc. Inst. Electr. Eng.—Optoelectron. 138, 343-354 (1991).

1989 (1)

J. Dewynne, J. R. Ockendon, P. Wilmott, "On a mathematical model for fibre tapering," SIAM J. Appl. Math. 49, 983-990 (1989).

1988 (1)

F. Bilodeau, K. O. Hill, S. Faucher, D. C. Johnson, "Low-loss highly overcoupled fused couplers: Fabrication and sensitivity to external pressure ," J. Lightw. Technol. 6, 1476-1482 (1988).

Electron. Lett. (2)

J. Villatoro, A. Diez, J. L. Cruz, M. V. Andres, "Highly sensitive optical hydrogen sensor using circular Pd-coated single mode tapered fibre ," Electron. Lett. 37, 1011-1012 (2001).

R. P. Kenny, T. A. Birks, K. P. Oakley, "Control of optical fiber taper shape," Electron. Lett. 27, 1654-1656 (1991).

J. Appl. Phys. (1)

C. Jiang, M. G. Kuzyk, J. Ding, W. Johns, D. J. Welker, "Fabrication and mechanical behaviour of dye-doped polymer optical fibre," J. Appl. Phys. 92, 4-12 (2002).

J. Lightw. Technol. (4)

S. C. Xue, R. I. Tanner, G. Barton, R. Lwin, M. C. J. Large, L. Poladian, "Fabrication of microstructured optical fibres, Part I: Problem formulation and numerical modeling of transient draw process," J. Lightw. Technol. 23, 2245-2254 (2005).

F. Bilodeau, K. O. Hill, S. Faucher, D. C. Johnson, "Low-loss highly overcoupled fused couplers: Fabrication and sensitivity to external pressure ," J. Lightw. Technol. 6, 1476-1482 (1988).

S. C. Xue, C. J. Large, G. W. Barton, R. I. Tanner, L. Poladian, R. Lwin, "Role of material properties and drawing conditions in the fabrication of microstructured optical fibres," J. Lightw. Technol. 24, 853-860 (2006).

T. A. Birks, Y. W. Li, "The shape of fiber tapers," J. Lightw. Technol. 10, 432-438 (1992).

Opt. Express (1)

Opt. Lett. (1)

Proc. Inst. Electr. Eng.—Optoelectron. (1)

J. D. Love, W. M. Henry, W. J. Stewards, R. J. Black, S. Lacroix, F. Ghontier, "Tapered single-mode fibres and devices. I. Adiabaticity criteria," Proc. Inst. Electr. Eng.—Optoelectron. 138, 343-354 (1991).

SIAM J. Appl. Math. (1)

J. Dewynne, J. R. Ockendon, P. Wilmott, "On a mathematical model for fibre tapering," SIAM J. Appl. Math. 49, 983-990 (1989).

Other (5)

T. A. Birks, G. Kakarantzas, P. St. J. Russell, "All-fibre devices based on tapered fibres," Opt. Fiber Commun. Conf., Los Angeles, CA (2004) Paper ThK2.

S. C. Xue, M. van Eijkelenborg, G. W. Barton, "Role of material properties and pulling conditions in tapering micro-capillary fibres ," Proc. 15th Int. Plastic Opt. Fibre Conf. (2006) pp. 307-313.

Fluent User's Manual 6.2Fluent Inc. (2003) Lebanon, NH.

P. Hambley, M. A. van Eijkelenborg, G. Barton, G. Henry, "Strategies and initial results for microstructured polymer optical fibre tapers," Proc. 14th Int. Plastic Opt. Fibre Conf. (2005) pp. 111-113.

R. B. Bird, R. C. Armstrong, O. Hassage, Dynamics of Polymeric Liquids (Wiley, 1977).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.