Abstract

Resonant filters in waveguides with vertical gratings have been realized on a silicon-on-insulator wafer. Two identical uniformly distributed Bragg reflectors with vertical gratings are separated by a quarter wavelength phase offset. Experimental studies show a broad stopband and a narrow transmission band which shifts with changing substrate temperature that is also illuminated by an external laser pump beam at 514-nm wavelength. Experimental results on a low-frequency thermal modulation using an external light source are also presented.

© 2007 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. H. Kogelnik, Topics in Applied Physics 7, Integrated Optics (Springer-Verlag, 1979) pp. 13-81.
  2. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984) pp. 235-253.
  3. D. G. Hall, Progress in Optics (North-Holland, 1991) pp. 1-63.
  4. Y. Suematsu, A. R. Adams, Handbook of Semiconductor Lasers and Photonic Integrated Circuits (Chapman & Hall, 1994).
  5. C. H. Henry, Y. Shani, R. C. Kisler, T. E. Jewell, V. Pol, N. A. Olsson, R. F. Kazarinov, K. J. Orlowski, "Compound Bragg reflection filters made by spatial frequency doubling lithography," J. Lightw. Technol. 7, 1379-1385 (1989).
  6. J. Wiedmann, K. Ebihara, H. C. Kim, B. Chen, M. Ohta, K. Matsui, S. Tamura, J.-I. Shim, S. Arai, "1.5 µm wavelength distributed reflector lasers with vertical grating," Electron. Lett. 37, 831-832 (2001).
  7. H. C. Kim, J. Wiedmann, K. Matsui, S. Tamura, S. Arai, "1.5-µm-wavelength distributed feedback lasers with deeply etched first-order vertical grating," Jpn. J. Appl. Phys. 40, L1107-L1109 (2001).
  8. H. C. Kim, H. Kanjo, T. Hasegawa, S. Tamura, S. Arai, "1.5 µm wavelength narrow stripe distributed reflector lasers for high performance operation," IEEE J. Sel. Topics Quantum Electron. 9, 1146-1152 (2003).
  9. G. P. Agrawal, N. K. Dutta, "Analysis of ridge-waveguide distributed feedback lasers," IEEE J. Quantum Electron. QE-21, 534-538 (1985).
  10. G. B. Arfken, Mathematical Methods for Physicists (Academic, 1985) pp. 963.
  11. H. H. Li, "Refractive index of silicon and germanium and its wavelength and temperature derivatives ," J. Phys. Chem. Ref. Data 9, 561-658 (1980).
  12. F. G. Della Corte, M. E. Montefusco, L. Moretti, I. Rendina, G. Cocorullo, "Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models," J. Appl. Phys. 88, 7115-7119 (2000).
  13. CRC Handbook of Chemistry and Physics, 86th CRC, Boca Raton, FL. (2005–2006) pp. 12-77.
  14. G. V. Treyz, "Silicon Mach-Zehnder waveguide interferometers operating at 1.3 µm ," Electron. Lett. 27, 118-120 (1991).
  15. U. Fischer, T. Zinke, B. Schüppert, K. Petermann, "Singlemode optical switches based on SOI waveguides with large cross-section," Electron. Lett. 30, 406-408 (1994).
  16. R. L. Espinola, M. C. Tsai, J. T. Yardley, R. M. Osgood, "Fast and low-power thermooptic switch on thin silicon-on-insulator," IEEE Photon. Technol. Lett. 15, 1366-1368 (2003).
  17. T. Asano, W. Kunishi, M. Nakamura, B. S. Song, S. Noda, "Dynamic wavelength tuning of channel-drop device in two-dimensional photonic crystal slab ," Electron. Lett. 41, 37-38 (2005).

2005 (1)

T. Asano, W. Kunishi, M. Nakamura, B. S. Song, S. Noda, "Dynamic wavelength tuning of channel-drop device in two-dimensional photonic crystal slab ," Electron. Lett. 41, 37-38 (2005).

2003 (2)

R. L. Espinola, M. C. Tsai, J. T. Yardley, R. M. Osgood, "Fast and low-power thermooptic switch on thin silicon-on-insulator," IEEE Photon. Technol. Lett. 15, 1366-1368 (2003).

H. C. Kim, H. Kanjo, T. Hasegawa, S. Tamura, S. Arai, "1.5 µm wavelength narrow stripe distributed reflector lasers for high performance operation," IEEE J. Sel. Topics Quantum Electron. 9, 1146-1152 (2003).

2001 (2)

J. Wiedmann, K. Ebihara, H. C. Kim, B. Chen, M. Ohta, K. Matsui, S. Tamura, J.-I. Shim, S. Arai, "1.5 µm wavelength distributed reflector lasers with vertical grating," Electron. Lett. 37, 831-832 (2001).

H. C. Kim, J. Wiedmann, K. Matsui, S. Tamura, S. Arai, "1.5-µm-wavelength distributed feedback lasers with deeply etched first-order vertical grating," Jpn. J. Appl. Phys. 40, L1107-L1109 (2001).

2000 (1)

F. G. Della Corte, M. E. Montefusco, L. Moretti, I. Rendina, G. Cocorullo, "Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models," J. Appl. Phys. 88, 7115-7119 (2000).

1994 (1)

U. Fischer, T. Zinke, B. Schüppert, K. Petermann, "Singlemode optical switches based on SOI waveguides with large cross-section," Electron. Lett. 30, 406-408 (1994).

1991 (1)

G. V. Treyz, "Silicon Mach-Zehnder waveguide interferometers operating at 1.3 µm ," Electron. Lett. 27, 118-120 (1991).

1989 (1)

C. H. Henry, Y. Shani, R. C. Kisler, T. E. Jewell, V. Pol, N. A. Olsson, R. F. Kazarinov, K. J. Orlowski, "Compound Bragg reflection filters made by spatial frequency doubling lithography," J. Lightw. Technol. 7, 1379-1385 (1989).

1985 (1)

G. P. Agrawal, N. K. Dutta, "Analysis of ridge-waveguide distributed feedback lasers," IEEE J. Quantum Electron. QE-21, 534-538 (1985).

1980 (1)

H. H. Li, "Refractive index of silicon and germanium and its wavelength and temperature derivatives ," J. Phys. Chem. Ref. Data 9, 561-658 (1980).

Electron. Lett. (4)

J. Wiedmann, K. Ebihara, H. C. Kim, B. Chen, M. Ohta, K. Matsui, S. Tamura, J.-I. Shim, S. Arai, "1.5 µm wavelength distributed reflector lasers with vertical grating," Electron. Lett. 37, 831-832 (2001).

G. V. Treyz, "Silicon Mach-Zehnder waveguide interferometers operating at 1.3 µm ," Electron. Lett. 27, 118-120 (1991).

U. Fischer, T. Zinke, B. Schüppert, K. Petermann, "Singlemode optical switches based on SOI waveguides with large cross-section," Electron. Lett. 30, 406-408 (1994).

T. Asano, W. Kunishi, M. Nakamura, B. S. Song, S. Noda, "Dynamic wavelength tuning of channel-drop device in two-dimensional photonic crystal slab ," Electron. Lett. 41, 37-38 (2005).

IEEE J. Quantum Electron. (1)

G. P. Agrawal, N. K. Dutta, "Analysis of ridge-waveguide distributed feedback lasers," IEEE J. Quantum Electron. QE-21, 534-538 (1985).

IEEE J. Sel. Topics Quantum Electron. (1)

H. C. Kim, H. Kanjo, T. Hasegawa, S. Tamura, S. Arai, "1.5 µm wavelength narrow stripe distributed reflector lasers for high performance operation," IEEE J. Sel. Topics Quantum Electron. 9, 1146-1152 (2003).

IEEE Photon. Technol. Lett. (1)

R. L. Espinola, M. C. Tsai, J. T. Yardley, R. M. Osgood, "Fast and low-power thermooptic switch on thin silicon-on-insulator," IEEE Photon. Technol. Lett. 15, 1366-1368 (2003).

J. Appl. Phys. (1)

F. G. Della Corte, M. E. Montefusco, L. Moretti, I. Rendina, G. Cocorullo, "Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models," J. Appl. Phys. 88, 7115-7119 (2000).

J. Lightw. Technol. (1)

C. H. Henry, Y. Shani, R. C. Kisler, T. E. Jewell, V. Pol, N. A. Olsson, R. F. Kazarinov, K. J. Orlowski, "Compound Bragg reflection filters made by spatial frequency doubling lithography," J. Lightw. Technol. 7, 1379-1385 (1989).

J. Phys. Chem. Ref. Data (1)

H. H. Li, "Refractive index of silicon and germanium and its wavelength and temperature derivatives ," J. Phys. Chem. Ref. Data 9, 561-658 (1980).

Jpn. J. Appl. Phys. (1)

H. C. Kim, J. Wiedmann, K. Matsui, S. Tamura, S. Arai, "1.5-µm-wavelength distributed feedback lasers with deeply etched first-order vertical grating," Jpn. J. Appl. Phys. 40, L1107-L1109 (2001).

Other (6)

H. Kogelnik, Topics in Applied Physics 7, Integrated Optics (Springer-Verlag, 1979) pp. 13-81.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984) pp. 235-253.

D. G. Hall, Progress in Optics (North-Holland, 1991) pp. 1-63.

Y. Suematsu, A. R. Adams, Handbook of Semiconductor Lasers and Photonic Integrated Circuits (Chapman & Hall, 1994).

CRC Handbook of Chemistry and Physics, 86th CRC, Boca Raton, FL. (2005–2006) pp. 12-77.

G. B. Arfken, Mathematical Methods for Physicists (Academic, 1985) pp. 963.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.