Abstract

An approximate model, along with the experimental verification for thulium (Tm)-doped silica glass fiber amplifier at 1470 nm upon 1064-nm pumping, has been proposed to estimate the optimum parameters and to analyze its performance in terms of gain, bandwidth, and noise performance. The Tm-doped silica glass fiber amplifier was found to be suitable for wavelength division multiplexing application, although a high pump power of more than 1000 mW was needed to achieve a significant gain.

© 2007 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. T. Sakamoto, S. Aozasa, T. Kanamori, K. Hoshino, M. Shimizu, "High gain and low noise TDFA for 1500 nm band employing novel high concentration doping technique ," Proc. OFC (2000) pp. 178-180.
  2. T. Kasamatsu, Y. Yano, T. Ono, "1.49 µm-band gain-shifted thulium-doped fiber amplifier for WDM transmission systems," J. Lightw. Technol. 20, 1826-1838 (2002).
  3. T. Komukai, T. Yamamoto, T. Sugawa, Y. Miyajima, "Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 µm," IEEE J. Quantum Electron. 31, 1880-1889 (1995).
  4. F. Roy, D. Bayart, A. Le Sauze, P. Baniel, "Noise and gain band management of thulium-doped fiber amplifier with dual-wavelength pumping schemes," IEEE Photon. Technol. Lett. 13, 788-790 (2001).
  5. M. Eichhorn, "Numerical modeling of Tm-doped double-clad fluoride fiber amplifiers," IEEE J. Quantum Electron. 41, 1574-1581 (2005).
  6. P. Peterka, B. Faure, W. Blanc, M. Karasek, B. Dussardier, "Theoretical modeling of S-band thulium-doped silica fiber amplifier," Opt. Quantum Electron. 36, 201-212 (2004).
  7. S. D. Jackson, T. A. King, "CW operation of a 1064-nm pumped Tm-Ho-doped silica fiber laser," IEEE J. Quantum Electron. 34, 1578-1587 (1998).
  8. A. Ghatak, K. Thyagarajan, Introduction to Fiber Optics (Cambridge Univ. Press, 1998).
  9. E. Desurvire, J. R. Simpson, "Amplification of spontaneous emission in erbium-doped single-mode fibers," J. Lightw. Technol. 7, 835-845 (1989).
  10. E. Desurvire, "Spectral noise figure of Er3+ doped fiber amplifiers," IEEE Photon. Technol. Lett. 2, 208-210 (1990).
  11. P. Palai, K. Thyagarajan, B. P. Pal, "Erbium-doped dispersion compensating fiber for simultaneous compensation of loss and dispersion ," Opt. Fiber Technol. 3, 149-153 (1997).
  12. W.-T. Han, Y. H. Kim, "Linear and nonlinear optical properties of optical fibers containing PbTe quantum dots for all optical switching application," Proc. 2nd Int. China-Korea Glass and Glass-Ceramics Symp. (2002) pp. 34-40.
  13. P. R. Watekar, M. L. N. Goswami, J. C. Biswas, H. N. Acharya, B. P. Pal, "Experimental realization of a novel dispersion compensating optical fiber amplifier for simultaneous compensation of positive dispersion and losses," Opt. Quantum Electron. 37, 377-390 (2005).
  14. B. Pederson, A. Bjarklev, J. H. Povlsen, K. Dyabdal, C. C. Larsen, "The design of erbium-doped fiber amplifier," J. Lightw. Technol. 9, 1105-1112 (1991).
  15. M. Karasek, "Optimum design of Er/Yb codoped fibers for large signal high pump power applications ," IEEE J. Quantum Electron. 33, 1699-1705 (1997).

2005 (2)

M. Eichhorn, "Numerical modeling of Tm-doped double-clad fluoride fiber amplifiers," IEEE J. Quantum Electron. 41, 1574-1581 (2005).

P. R. Watekar, M. L. N. Goswami, J. C. Biswas, H. N. Acharya, B. P. Pal, "Experimental realization of a novel dispersion compensating optical fiber amplifier for simultaneous compensation of positive dispersion and losses," Opt. Quantum Electron. 37, 377-390 (2005).

2004 (1)

P. Peterka, B. Faure, W. Blanc, M. Karasek, B. Dussardier, "Theoretical modeling of S-band thulium-doped silica fiber amplifier," Opt. Quantum Electron. 36, 201-212 (2004).

2002 (1)

T. Kasamatsu, Y. Yano, T. Ono, "1.49 µm-band gain-shifted thulium-doped fiber amplifier for WDM transmission systems," J. Lightw. Technol. 20, 1826-1838 (2002).

2001 (1)

F. Roy, D. Bayart, A. Le Sauze, P. Baniel, "Noise and gain band management of thulium-doped fiber amplifier with dual-wavelength pumping schemes," IEEE Photon. Technol. Lett. 13, 788-790 (2001).

1998 (1)

S. D. Jackson, T. A. King, "CW operation of a 1064-nm pumped Tm-Ho-doped silica fiber laser," IEEE J. Quantum Electron. 34, 1578-1587 (1998).

1997 (2)

P. Palai, K. Thyagarajan, B. P. Pal, "Erbium-doped dispersion compensating fiber for simultaneous compensation of loss and dispersion ," Opt. Fiber Technol. 3, 149-153 (1997).

M. Karasek, "Optimum design of Er/Yb codoped fibers for large signal high pump power applications ," IEEE J. Quantum Electron. 33, 1699-1705 (1997).

1995 (1)

T. Komukai, T. Yamamoto, T. Sugawa, Y. Miyajima, "Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 µm," IEEE J. Quantum Electron. 31, 1880-1889 (1995).

1991 (1)

B. Pederson, A. Bjarklev, J. H. Povlsen, K. Dyabdal, C. C. Larsen, "The design of erbium-doped fiber amplifier," J. Lightw. Technol. 9, 1105-1112 (1991).

1990 (1)

E. Desurvire, "Spectral noise figure of Er3+ doped fiber amplifiers," IEEE Photon. Technol. Lett. 2, 208-210 (1990).

1989 (1)

E. Desurvire, J. R. Simpson, "Amplification of spontaneous emission in erbium-doped single-mode fibers," J. Lightw. Technol. 7, 835-845 (1989).

IEEE J. Quantum Electron. (4)

T. Komukai, T. Yamamoto, T. Sugawa, Y. Miyajima, "Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 µm," IEEE J. Quantum Electron. 31, 1880-1889 (1995).

M. Eichhorn, "Numerical modeling of Tm-doped double-clad fluoride fiber amplifiers," IEEE J. Quantum Electron. 41, 1574-1581 (2005).

S. D. Jackson, T. A. King, "CW operation of a 1064-nm pumped Tm-Ho-doped silica fiber laser," IEEE J. Quantum Electron. 34, 1578-1587 (1998).

M. Karasek, "Optimum design of Er/Yb codoped fibers for large signal high pump power applications ," IEEE J. Quantum Electron. 33, 1699-1705 (1997).

IEEE Photon. Technol. Lett. (2)

E. Desurvire, "Spectral noise figure of Er3+ doped fiber amplifiers," IEEE Photon. Technol. Lett. 2, 208-210 (1990).

F. Roy, D. Bayart, A. Le Sauze, P. Baniel, "Noise and gain band management of thulium-doped fiber amplifier with dual-wavelength pumping schemes," IEEE Photon. Technol. Lett. 13, 788-790 (2001).

J. Lightw. Technol. (3)

T. Kasamatsu, Y. Yano, T. Ono, "1.49 µm-band gain-shifted thulium-doped fiber amplifier for WDM transmission systems," J. Lightw. Technol. 20, 1826-1838 (2002).

E. Desurvire, J. R. Simpson, "Amplification of spontaneous emission in erbium-doped single-mode fibers," J. Lightw. Technol. 7, 835-845 (1989).

B. Pederson, A. Bjarklev, J. H. Povlsen, K. Dyabdal, C. C. Larsen, "The design of erbium-doped fiber amplifier," J. Lightw. Technol. 9, 1105-1112 (1991).

Opt. Fiber Technol. (1)

P. Palai, K. Thyagarajan, B. P. Pal, "Erbium-doped dispersion compensating fiber for simultaneous compensation of loss and dispersion ," Opt. Fiber Technol. 3, 149-153 (1997).

Opt. Quantum Electron. (2)

P. R. Watekar, M. L. N. Goswami, J. C. Biswas, H. N. Acharya, B. P. Pal, "Experimental realization of a novel dispersion compensating optical fiber amplifier for simultaneous compensation of positive dispersion and losses," Opt. Quantum Electron. 37, 377-390 (2005).

P. Peterka, B. Faure, W. Blanc, M. Karasek, B. Dussardier, "Theoretical modeling of S-band thulium-doped silica fiber amplifier," Opt. Quantum Electron. 36, 201-212 (2004).

Other (3)

A. Ghatak, K. Thyagarajan, Introduction to Fiber Optics (Cambridge Univ. Press, 1998).

T. Sakamoto, S. Aozasa, T. Kanamori, K. Hoshino, M. Shimizu, "High gain and low noise TDFA for 1500 nm band employing novel high concentration doping technique ," Proc. OFC (2000) pp. 178-180.

W.-T. Han, Y. H. Kim, "Linear and nonlinear optical properties of optical fibers containing PbTe quantum dots for all optical switching application," Proc. 2nd Int. China-Korea Glass and Glass-Ceramics Symp. (2002) pp. 34-40.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.