Abstract

A 6.5-fold reduction in thermal sensitivity is demonstrated experimentally in a fiber-optic gyroscope made of a 235-m length of quadrupolar-wound air-core fiber, compared to the same gyro operated with a similar coil of conventional (SMF28) fiber. This result is in good agreement with the theoretical value of 6.6 and the value of 7.5 expected from independent thermal measurements carried out on short pieces of the same fibers.

© 2007 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. C. C. Cutler, S. A. Newton, H. J. Shaw, "Limitation of rotation sensing by scattering," Opt. Lett. 5, 488-490 (1980).
  2. S. Ezekiel, J. L. Davis, R. W. Hellwarth, "Observation of intensity-induced nonreciprocity in a fiber-optic gyroscope," Opt. Lett. 7, 457-459 (1982).
  3. N. J. Frigo, "Compensation of linear sources of nonreciprocity in Sagnac interferometers," Proc. SPIE—Fiber Optic Laser Sensors (1983) pp. 268-271.
  4. D. M. Shupe, "Thermally induced nonreciprocity in the fiber-optic interferometer," Appl. Opt. 19, 654-655 (1980).
  5. J. L. Wagener, M. J. F. Digonnet, H. J. Shaw, "A high-stability fiber amplifier source for the fiber optic gyroscope," J. Lightw. Technol. 15, 1689-1694 (1997).
  6. H. K. Kim, V. Dangui, M. Digonnet, G. Kino, "Fiber-optic gyroscope using an air-core photonic-bandgap fiber," Proc. SPIE 5855, 198-201 (2005).
  7. V. Dangui, H. K. Kim, M. J. F. Digonnet, G. S. Kino, "Phase sensitivity to temperature of the fundamental mode in air-guiding photonic-bandgap fibers ," Opt. Express 13, 6669-6684 (2005).
  8. F. Mohr, "Thermooptically induced bias drift in fiber optical Sagnac interferometers," J. Lightw. Technol. 14, 27-41 (1996).
  9. O. F. Tirat, J.-M. Euverte, "Finite element model of thermal transient effect in fiber optic gyro," Proc. SPIE 2837, 230-238 (1996).
  10. C. M. Lofts, P. B. Ruffin, M. Parker, C. C. Sung, "Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils ," Opt. Eng. 34, 2856-2863 (1995).
  11. J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, A. Tunnermann, "Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation ," Opt. Express 11, 2982-2990 (2003).
  12. K. Lyytikaïnen, J. Zagari, G. Barton, J. Canning, "Heat transfer within a microstructured polymer optical fibre preform," Model. Simul. Mater. Sci. Eng. 12, S255-S265 (2004).
  13. W. K. Burns, C.-L. Chen, R. P. Moeller, "Fiber-optic gyroscopes with broad-band sources," J. Lightw. Technol. LT-1, 98-105 (1983).

2005 (2)

H. K. Kim, V. Dangui, M. Digonnet, G. Kino, "Fiber-optic gyroscope using an air-core photonic-bandgap fiber," Proc. SPIE 5855, 198-201 (2005).

V. Dangui, H. K. Kim, M. J. F. Digonnet, G. S. Kino, "Phase sensitivity to temperature of the fundamental mode in air-guiding photonic-bandgap fibers ," Opt. Express 13, 6669-6684 (2005).

2004 (1)

K. Lyytikaïnen, J. Zagari, G. Barton, J. Canning, "Heat transfer within a microstructured polymer optical fibre preform," Model. Simul. Mater. Sci. Eng. 12, S255-S265 (2004).

2003 (1)

1997 (1)

J. L. Wagener, M. J. F. Digonnet, H. J. Shaw, "A high-stability fiber amplifier source for the fiber optic gyroscope," J. Lightw. Technol. 15, 1689-1694 (1997).

1996 (2)

F. Mohr, "Thermooptically induced bias drift in fiber optical Sagnac interferometers," J. Lightw. Technol. 14, 27-41 (1996).

O. F. Tirat, J.-M. Euverte, "Finite element model of thermal transient effect in fiber optic gyro," Proc. SPIE 2837, 230-238 (1996).

1995 (1)

C. M. Lofts, P. B. Ruffin, M. Parker, C. C. Sung, "Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils ," Opt. Eng. 34, 2856-2863 (1995).

1983 (1)

W. K. Burns, C.-L. Chen, R. P. Moeller, "Fiber-optic gyroscopes with broad-band sources," J. Lightw. Technol. LT-1, 98-105 (1983).

1982 (1)

1980 (2)

Appl. Opt. (1)

J. Lightw. Technol. (3)

F. Mohr, "Thermooptically induced bias drift in fiber optical Sagnac interferometers," J. Lightw. Technol. 14, 27-41 (1996).

J. L. Wagener, M. J. F. Digonnet, H. J. Shaw, "A high-stability fiber amplifier source for the fiber optic gyroscope," J. Lightw. Technol. 15, 1689-1694 (1997).

W. K. Burns, C.-L. Chen, R. P. Moeller, "Fiber-optic gyroscopes with broad-band sources," J. Lightw. Technol. LT-1, 98-105 (1983).

Model. Simul. Mater. Sci. Eng. (1)

K. Lyytikaïnen, J. Zagari, G. Barton, J. Canning, "Heat transfer within a microstructured polymer optical fibre preform," Model. Simul. Mater. Sci. Eng. 12, S255-S265 (2004).

Opt. Eng. (1)

C. M. Lofts, P. B. Ruffin, M. Parker, C. C. Sung, "Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils ," Opt. Eng. 34, 2856-2863 (1995).

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (2)

H. K. Kim, V. Dangui, M. Digonnet, G. Kino, "Fiber-optic gyroscope using an air-core photonic-bandgap fiber," Proc. SPIE 5855, 198-201 (2005).

O. F. Tirat, J.-M. Euverte, "Finite element model of thermal transient effect in fiber optic gyro," Proc. SPIE 2837, 230-238 (1996).

Other (1)

N. J. Frigo, "Compensation of linear sources of nonreciprocity in Sagnac interferometers," Proc. SPIE—Fiber Optic Laser Sensors (1983) pp. 268-271.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.