Abstract

Two long-period gratings (LPGs) fabricated in series in an optical fiber form a Mach–Zehnder interferometer, producing a sinusoidal channelled spectrum within the characteristic LPG attenuation bands, which has the appearance of an interference fringe pattern. The phase of the fringes is sensitive to changes in the surrounding environmental parameters, such as refractive index. Fabrication of a number of identical cascaded LPG pairs with different separations produces independent fringe patterns of different frequencies within the attenuation bands. The application of basic Fourier techniques to analyze the transmission spectrum allows the phase of each fringe pattern to be determined independently, facilitating the differentiation of external effects acting on each interferometer.

© 2007 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription