Abstract

The chromatic dispersion of an optical fiber is measured using a time-of-flight technique, based on temporally and spectrally resolving a dispersed broadband pulse, on which a spectral fringe pattern has been imposed using an etalon. The technique employs broadband supercontinuum radiation, generated by launching picosecond pulses from a fiber laser into a photonic-crystal fiber. It allows the dispersion of highly dispersive optical fibers and components to be measured with a high spectral resolution over a wide wavelength region. The technique is demonstrated by measuring the dispersion of a dispersion-compensating module over its entire 400-nm transmission band with a subnanometer spectral resolution.

© 2007 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. P. V. Kelkar, F. Coppinger, A. S. Bhushan, B. Jalali, "Time-domain optical sensing," Electron. Lett. 35, 1661-1662 (1999).
  2. S. T. Sanders, "Wavelength agile fibre laser using group-velocity dispersion of pulsed supercontinua and application to broadband absorption spectroscopy," Appl. Phys. B, Photophys. Laser Chem. 75, 799-802 (2002).
  3. L. G. Cohen, "Comparison of single-mode fiber dispersion measurement techniques," J. Lightw. Technol. LT-3, 958-966 (1985).
  4. L. F. Mollenauer, P. V. Mamyshev, M. J. Neubelt, "Method for facile and accurate measurements of optical fiber dispersion maps," Opt. Lett. 21, 1724-1726 (1996).
  5. C. Lin, A. R. Tynes, A. Tomita, P. L. Liu, D. L. Philen, "Chromatic dispersion measurements in single-mode fibers using picosecond InGaAsP injection lasers in the 1.2- to 1.5-µm spectral region," Bell Syst. Tech. J. 62, 457-462 (1983).
  6. L. G. Cohen, C. Lin, "A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser ," IEEE J. Quantum Electron. QE-14, 855-859 (1978).
  7. K. Mori, T. Morioka, M. Saruwatari, "Group velocity dispersion measurement using supercontinuum picosecond pulses generated in an optical fibre," Electron. Lett. 29, 987-989 (1993).
  8. F. Koch, S. V. Chernikov, J. R. Taylor, "Dispersion measurement in optical fibres over the entire spectral range from 1.1 µm to 1.7 µm," Opt. Commun. 175, 209-213 (2000).
  9. N. Nishizawa, A. Muto, T. Goto, "Measurement of chromatic dispersion of optical fibers using wavelength-tunable soliton pulses ," Jpn. J. Appl. Phys. 39, 4990-4992 (2000).
  10. R. R. Alfano, The Supercontinuum Laser Source (Springer-Verlag, 2006).
  11. J.-N. Maran, R. Slavík, S. LaRochelle, M. Karásek, "Chromatic dispersion measurement using a multiwavelength frequency-shifted feedback fiber laser ," IEEE Trans. Instrum. Meas. 53, 67-71 (2004).
  12. K. Mezaki, private communicationSakuraJapanFujikura Ltd. (Fujikura Ltd., 2006).

2004 (1)

J.-N. Maran, R. Slavík, S. LaRochelle, M. Karásek, "Chromatic dispersion measurement using a multiwavelength frequency-shifted feedback fiber laser ," IEEE Trans. Instrum. Meas. 53, 67-71 (2004).

2002 (1)

S. T. Sanders, "Wavelength agile fibre laser using group-velocity dispersion of pulsed supercontinua and application to broadband absorption spectroscopy," Appl. Phys. B, Photophys. Laser Chem. 75, 799-802 (2002).

2000 (2)

F. Koch, S. V. Chernikov, J. R. Taylor, "Dispersion measurement in optical fibres over the entire spectral range from 1.1 µm to 1.7 µm," Opt. Commun. 175, 209-213 (2000).

N. Nishizawa, A. Muto, T. Goto, "Measurement of chromatic dispersion of optical fibers using wavelength-tunable soliton pulses ," Jpn. J. Appl. Phys. 39, 4990-4992 (2000).

1999 (1)

P. V. Kelkar, F. Coppinger, A. S. Bhushan, B. Jalali, "Time-domain optical sensing," Electron. Lett. 35, 1661-1662 (1999).

1996 (1)

1993 (1)

K. Mori, T. Morioka, M. Saruwatari, "Group velocity dispersion measurement using supercontinuum picosecond pulses generated in an optical fibre," Electron. Lett. 29, 987-989 (1993).

1985 (1)

L. G. Cohen, "Comparison of single-mode fiber dispersion measurement techniques," J. Lightw. Technol. LT-3, 958-966 (1985).

1983 (1)

C. Lin, A. R. Tynes, A. Tomita, P. L. Liu, D. L. Philen, "Chromatic dispersion measurements in single-mode fibers using picosecond InGaAsP injection lasers in the 1.2- to 1.5-µm spectral region," Bell Syst. Tech. J. 62, 457-462 (1983).

1978 (1)

L. G. Cohen, C. Lin, "A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser ," IEEE J. Quantum Electron. QE-14, 855-859 (1978).

Appl. Phys. B, Photophys. Laser Chem. (1)

S. T. Sanders, "Wavelength agile fibre laser using group-velocity dispersion of pulsed supercontinua and application to broadband absorption spectroscopy," Appl. Phys. B, Photophys. Laser Chem. 75, 799-802 (2002).

Bell Syst. Tech. J. (1)

C. Lin, A. R. Tynes, A. Tomita, P. L. Liu, D. L. Philen, "Chromatic dispersion measurements in single-mode fibers using picosecond InGaAsP injection lasers in the 1.2- to 1.5-µm spectral region," Bell Syst. Tech. J. 62, 457-462 (1983).

Electron. Lett. (2)

K. Mori, T. Morioka, M. Saruwatari, "Group velocity dispersion measurement using supercontinuum picosecond pulses generated in an optical fibre," Electron. Lett. 29, 987-989 (1993).

P. V. Kelkar, F. Coppinger, A. S. Bhushan, B. Jalali, "Time-domain optical sensing," Electron. Lett. 35, 1661-1662 (1999).

IEEE J. Quantum Electron. (1)

L. G. Cohen, C. Lin, "A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser ," IEEE J. Quantum Electron. QE-14, 855-859 (1978).

IEEE Trans. Instrum. Meas. (1)

J.-N. Maran, R. Slavík, S. LaRochelle, M. Karásek, "Chromatic dispersion measurement using a multiwavelength frequency-shifted feedback fiber laser ," IEEE Trans. Instrum. Meas. 53, 67-71 (2004).

J. Lightw. Technol. (1)

L. G. Cohen, "Comparison of single-mode fiber dispersion measurement techniques," J. Lightw. Technol. LT-3, 958-966 (1985).

Jpn. J. Appl. Phys. (1)

N. Nishizawa, A. Muto, T. Goto, "Measurement of chromatic dispersion of optical fibers using wavelength-tunable soliton pulses ," Jpn. J. Appl. Phys. 39, 4990-4992 (2000).

Opt. Commun. (1)

F. Koch, S. V. Chernikov, J. R. Taylor, "Dispersion measurement in optical fibres over the entire spectral range from 1.1 µm to 1.7 µm," Opt. Commun. 175, 209-213 (2000).

Opt. Lett. (1)

Other (2)

R. R. Alfano, The Supercontinuum Laser Source (Springer-Verlag, 2006).

K. Mezaki, private communicationSakuraJapanFujikura Ltd. (Fujikura Ltd., 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.