Abstract

We theoretically evaluate the performance of tunable channel-selective wavelength shift based on cascaded sum- and difference-frequency generation by the use of two pump lights in periodically poled lithium niobate waveguides. In double-pass configurations, the functions of wavelength add/drop and wavelength shift are easy to integrate in the same waveguide. Analysis shows that a longer waveguide more competently adapts narrower channel spacing in wavelength-division-multiplexed (WDM) systems. This wavelength shifter is flexible due to the almost separable operations of the two pumps: The channel is selected by setting the first pump, and the wavelength-shifting value is tuned by adjusting the second pump. This wavelength shifter has a very large dynamic region. For a 2.56-cm-long waveguide, the maximum dynamic region is as broad as 67 nm in a 0.4-nm channel-spacing WDM system. The dynamic region is mainly dominated by the limitation of multiple-channel crosstalk in a dense WDM system. However, it is dominated by the limitation of single-channel efficiency fluctuation in a coarse one.

© 2007 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. K. M. Sivalingam, S. Subramaniam, Optical WDM Networks: Principles and Practice (Kluwer, 2000).
  2. T. Saida, A. Kaneko, T. Goh, M. Okuno, A. Himeno, K. Takiguchi, K. Okamoto, "Athermal silica-based optical add/drop multiplexer consisting of arrayed waveguide gratings and double gate thermo-optical switches," Electron. Lett. 36, 528-529 (2000).
  3. C. R. Doerr, L. W. Stulz, J. Gates, M. Cappuzzo, E. Laskowski, L. Gomez, A. Paunescu, A. White, C. Narayanan, "Arrayed waveguide lens wavelength add–drop in silica," IEEE Photon. Technol. Lett. 11, 557-559 (1999).
  4. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add–drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
  5. J. P. R. Lacey, G. J. Pendock, R. S. Tucker, "All-optical 1300-nm to 1550-nm wavelength conversion using cross-phase modulation in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 8, 885-887 (1996).
  6. K. Obermann, S. Kindt, D. Breuer, K. Petermann, "Performance analysis of wavelength converters based on cross-gain modulation in semiconductor-optical amplifiers," J. Lightw. Technol. 16, 78-85 (1998).
  7. T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightw. Technol. 14, 942-954 (1996).
  8. S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightw. Technol. 14, 955-966 (1996).
  9. M. E. Marhic, Y. Park, F. S. Yang, L. G. Kazovsky, "Widely tunable spectrum translation and wavelength exchange by four-wave mixing in optical fibers ," Opt. Lett. 21, 1906-1908 (1996).
  10. K. Uesaka, K. K. Y. Wong, M. E. Marhic, L. G. Kazovsky, "Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments ," IEEE J. Sel. Topics Quantum Electron. 8, 560-568 (2002).
  11. J. P. Donnelly, H. Q. Le, E. A. Swanson, S. H. Groves, A. Darwish, E. P. Ippen, "Nondegenerate four-wave mixing wavelength conversion in low-loss passive InGaAsP-InP quantum-well waveguides," IEEE Photon. Technol. Lett. 8, 623-625 (1996).
  12. D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, K. J. Vahala, "Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers," IEEE J. Sel. Topics Quantum Electron. 3, 1146-1155 (1997).
  13. C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, M. Kawahara, "Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides," Appl. Phys. Lett. 63, 1170-1172 (1993).
  14. M. H. Chou, J. Hauden, M. A. Arbore, M. M. Fejer, "1.5-µm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures," Opt. Lett. 23, 1004-1006 (1998).
  15. S. Gao, C. Yang, G. Jin, "Conventional-band and long-wavelength-band efficient wavelength conversion by difference-frequency generation in sinusoidally chirped optical superlattice waveguides," Opt. Commun. 239, 333-338 (2004).
  16. K. Gallo, G. Assanto, "Analysis of lithium niobate all-optical wavelength shifters for the third spectral window ," J. Opt. Soc. Amer. B, Opt. Phys. 16, 741-753 (1999).
  17. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, S. B. Christman, "1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides ," IEEE Photon. Technol. Lett. 11, 653-655 (1999).
  18. S. Gao, C. Yang, G. Jin, "Flat broad-band wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate," IEEE Photon. Technol. Lett. 16, 557-559 (2004).
  19. S. Gao, C. Yang, G. Jin, "Wavelength converter based on linearly chirped gratings in lithium niobate through cascaded second-order processes," Chin. Phys. Lett. 20, 1272-1274 (2003).
  20. C. Q. Xu, B. Chen, "Cascaded wavelength conversions based on sum-frequency generation and difference-frequency generation," Opt. Lett. 29, 292-294 (2004).
  21. J. Wang, J. Sun, C. Luo, Q. Sun, "Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference-frequency generation (SFG+DFG) in LiNbO3 waveguide," Opt. Express 13, 7405-7414 (2005).
  22. J. Yamawaku, A. Takada, E. Yamazaki, "Selective wavelength conversion using PPLN waveguide with two pump configuration," Conf. Lasers and Electro-Opt. (2003) Paper CWB5.
  23. Y. Min, J. Lee, Y. Lee, W. Grundkoetter, V. Quiring, W. Sohler, "Tunable all-optical control of wavelength conversion of 5 ps pulses by cascaded sum- and difference-frequency generation (cSFG/DFG) in a Ti:PPLN waveguide," Conf. Optical Fiber Commun. (2003) Paper FP4.
  24. S. Yu, W. Gu, "A tunable wavelength conversion and wavelength add/drop scheme based on cascaded second-order nonlinearity with double-pass configuration," IEEE J. Quantum Electron. 41, 1007-1012 (2005).
  25. Y. L. Lee, B.-A. Yu, C. Jung, Y.-C. Noh, J. Lee, D.-K. Ko, "All-optical wavelength conversion and tuning by the cascaded sum- and difference-frequency generation (cSFG/DFG) in a temperature gradient controlled Ti:PPLN channel waveguide," Opt. Express 13, 2988-2993 (2005).
  26. R. Osellame, R. Ramponi, M. Marangoni, G. Tartarini, P. Bassi, "Integrated all-optical nonlinear device for reconfigurable add/drop and wavelength shifting of WDM signals," Appl. Phys. B, Photophys. Laser Chem. 73, 505-509 (2001).
  27. M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, "Quasi-phase-matched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).

2005

2004

C. Q. Xu, B. Chen, "Cascaded wavelength conversions based on sum-frequency generation and difference-frequency generation," Opt. Lett. 29, 292-294 (2004).

S. Gao, C. Yang, G. Jin, "Flat broad-band wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate," IEEE Photon. Technol. Lett. 16, 557-559 (2004).

S. Gao, C. Yang, G. Jin, "Conventional-band and long-wavelength-band efficient wavelength conversion by difference-frequency generation in sinusoidally chirped optical superlattice waveguides," Opt. Commun. 239, 333-338 (2004).

2003

S. Gao, C. Yang, G. Jin, "Wavelength converter based on linearly chirped gratings in lithium niobate through cascaded second-order processes," Chin. Phys. Lett. 20, 1272-1274 (2003).

2002

K. Uesaka, K. K. Y. Wong, M. E. Marhic, L. G. Kazovsky, "Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments ," IEEE J. Sel. Topics Quantum Electron. 8, 560-568 (2002).

2001

R. Osellame, R. Ramponi, M. Marangoni, G. Tartarini, P. Bassi, "Integrated all-optical nonlinear device for reconfigurable add/drop and wavelength shifting of WDM signals," Appl. Phys. B, Photophys. Laser Chem. 73, 505-509 (2001).

2000

T. Saida, A. Kaneko, T. Goh, M. Okuno, A. Himeno, K. Takiguchi, K. Okamoto, "Athermal silica-based optical add/drop multiplexer consisting of arrayed waveguide gratings and double gate thermo-optical switches," Electron. Lett. 36, 528-529 (2000).

1999

C. R. Doerr, L. W. Stulz, J. Gates, M. Cappuzzo, E. Laskowski, L. Gomez, A. Paunescu, A. White, C. Narayanan, "Arrayed waveguide lens wavelength add–drop in silica," IEEE Photon. Technol. Lett. 11, 557-559 (1999).

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add–drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).

K. Gallo, G. Assanto, "Analysis of lithium niobate all-optical wavelength shifters for the third spectral window ," J. Opt. Soc. Amer. B, Opt. Phys. 16, 741-753 (1999).

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, S. B. Christman, "1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides ," IEEE Photon. Technol. Lett. 11, 653-655 (1999).

1998

K. Obermann, S. Kindt, D. Breuer, K. Petermann, "Performance analysis of wavelength converters based on cross-gain modulation in semiconductor-optical amplifiers," J. Lightw. Technol. 16, 78-85 (1998).

M. H. Chou, J. Hauden, M. A. Arbore, M. M. Fejer, "1.5-µm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures," Opt. Lett. 23, 1004-1006 (1998).

1997

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, K. J. Vahala, "Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers," IEEE J. Sel. Topics Quantum Electron. 3, 1146-1155 (1997).

1996

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightw. Technol. 14, 942-954 (1996).

S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightw. Technol. 14, 955-966 (1996).

J. P. Donnelly, H. Q. Le, E. A. Swanson, S. H. Groves, A. Darwish, E. P. Ippen, "Nondegenerate four-wave mixing wavelength conversion in low-loss passive InGaAsP-InP quantum-well waveguides," IEEE Photon. Technol. Lett. 8, 623-625 (1996).

J. P. R. Lacey, G. J. Pendock, R. S. Tucker, "All-optical 1300-nm to 1550-nm wavelength conversion using cross-phase modulation in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 8, 885-887 (1996).

M. E. Marhic, Y. Park, F. S. Yang, L. G. Kazovsky, "Widely tunable spectrum translation and wavelength exchange by four-wave mixing in optical fibers ," Opt. Lett. 21, 1906-1908 (1996).

1993

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, M. Kawahara, "Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides," Appl. Phys. Lett. 63, 1170-1172 (1993).

1992

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, "Quasi-phase-matched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).

Appl. Phys. B, Photophys. Laser Chem.

R. Osellame, R. Ramponi, M. Marangoni, G. Tartarini, P. Bassi, "Integrated all-optical nonlinear device for reconfigurable add/drop and wavelength shifting of WDM signals," Appl. Phys. B, Photophys. Laser Chem. 73, 505-509 (2001).

Appl. Phys. Lett.

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, M. Kawahara, "Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides," Appl. Phys. Lett. 63, 1170-1172 (1993).

Chin. Phys. Lett.

S. Gao, C. Yang, G. Jin, "Wavelength converter based on linearly chirped gratings in lithium niobate through cascaded second-order processes," Chin. Phys. Lett. 20, 1272-1274 (2003).

Electron. Lett.

T. Saida, A. Kaneko, T. Goh, M. Okuno, A. Himeno, K. Takiguchi, K. Okamoto, "Athermal silica-based optical add/drop multiplexer consisting of arrayed waveguide gratings and double gate thermo-optical switches," Electron. Lett. 36, 528-529 (2000).

IEEE J. Quantum Electron.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add–drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, "Quasi-phase-matched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).

S. Yu, W. Gu, "A tunable wavelength conversion and wavelength add/drop scheme based on cascaded second-order nonlinearity with double-pass configuration," IEEE J. Quantum Electron. 41, 1007-1012 (2005).

IEEE J. Sel. Topics Quantum Electron.

K. Uesaka, K. K. Y. Wong, M. E. Marhic, L. G. Kazovsky, "Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments ," IEEE J. Sel. Topics Quantum Electron. 8, 560-568 (2002).

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, K. J. Vahala, "Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers," IEEE J. Sel. Topics Quantum Electron. 3, 1146-1155 (1997).

IEEE Photon. Technol. Lett.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, S. B. Christman, "1.5-µm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides ," IEEE Photon. Technol. Lett. 11, 653-655 (1999).

S. Gao, C. Yang, G. Jin, "Flat broad-band wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate," IEEE Photon. Technol. Lett. 16, 557-559 (2004).

J. P. Donnelly, H. Q. Le, E. A. Swanson, S. H. Groves, A. Darwish, E. P. Ippen, "Nondegenerate four-wave mixing wavelength conversion in low-loss passive InGaAsP-InP quantum-well waveguides," IEEE Photon. Technol. Lett. 8, 623-625 (1996).

C. R. Doerr, L. W. Stulz, J. Gates, M. Cappuzzo, E. Laskowski, L. Gomez, A. Paunescu, A. White, C. Narayanan, "Arrayed waveguide lens wavelength add–drop in silica," IEEE Photon. Technol. Lett. 11, 557-559 (1999).

J. P. R. Lacey, G. J. Pendock, R. S. Tucker, "All-optical 1300-nm to 1550-nm wavelength conversion using cross-phase modulation in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 8, 885-887 (1996).

J. Lightw. Technol.

K. Obermann, S. Kindt, D. Breuer, K. Petermann, "Performance analysis of wavelength converters based on cross-gain modulation in semiconductor-optical amplifiers," J. Lightw. Technol. 16, 78-85 (1998).

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightw. Technol. 14, 942-954 (1996).

S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightw. Technol. 14, 955-966 (1996).

J. Opt. Soc. Amer. B, Opt. Phys.

K. Gallo, G. Assanto, "Analysis of lithium niobate all-optical wavelength shifters for the third spectral window ," J. Opt. Soc. Amer. B, Opt. Phys. 16, 741-753 (1999).

Opt. Commun.

S. Gao, C. Yang, G. Jin, "Conventional-band and long-wavelength-band efficient wavelength conversion by difference-frequency generation in sinusoidally chirped optical superlattice waveguides," Opt. Commun. 239, 333-338 (2004).

Opt. Express

Opt. Lett.

Other

K. M. Sivalingam, S. Subramaniam, Optical WDM Networks: Principles and Practice (Kluwer, 2000).

J. Yamawaku, A. Takada, E. Yamazaki, "Selective wavelength conversion using PPLN waveguide with two pump configuration," Conf. Lasers and Electro-Opt. (2003) Paper CWB5.

Y. Min, J. Lee, Y. Lee, W. Grundkoetter, V. Quiring, W. Sohler, "Tunable all-optical control of wavelength conversion of 5 ps pulses by cascaded sum- and difference-frequency generation (cSFG/DFG) in a Ti:PPLN waveguide," Conf. Optical Fiber Commun. (2003) Paper FP4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.