Abstract

A comprehensive study of electrothermally driven microelectromechanical system (MEMS) variable optical attenuator (VOA) devices using an H-shaped structure is presented in this paper. Based on its unique structural design, a retroreflection-type VOA of smaller footprint is realized. The repeatability and stability of the static and transient characteristics of attenuation behavior at various ambient temperatures are characterized. The fluctuation of attenuation curves under the same driving voltage at the same ambient temperatures is less than ±0.1 dB. Again, comparing the attenuation curves measured at 25 °C to 75 °Cand at 25 °C to 12.5 °C, the deviation of attenuation under the same driving voltage is within the 0.6-dB range. Within the 40-dB attenuation range, the measured switching time from nonattenuation state to a particular attenuation state or between two attenuation states is less than 10 ms. This electrothermally actuated MEMS VOA also demonstrates the state-of-the-art dynamic attenuation stability that complies with the Telecordia GR1221 regulations, where the dynamic fluctuation of attenuation at 20 dB is less than ±0.36 dB under a vibration testing condition of 20 G periodical shocks with frequency from 20 Hz to 2 kHz.

© 2007 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription