Abstract

The use of a fiber loop mirror for the generation of dispersion tolerant double-sideband with suppressed carrier signals is presented. An asymmetric phase difference within the loop is in charge of filtering out the desired harmonic components at the output. This phase difference is generated by different methods, such as a phase modulator or cross-phase modulation effects in semiconductor optical amplifiers. The loop offers high efficiency and stability within a bandwidth of more than 130 nm. This scheme is suitable for remote signal generation in wavelength-division multiplexing systems.

© 2007 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. G. H. Smith, D. Novak, C. Lim, "A millimeter-wave full-duplex fiber-radio star-tree architecture incorporating WDM and SCM ," IEEE Photon. Technol. Lett. 10, 1650-1652 (1998).
  2. M. Sauer, K. Kojucharow, H. Kaluzni, M. Otto, C. G. Schäffer, "Millimeter-wave wireless LAN based on simultaneous upconversion technique of optical WDM channels ," Eur. Microw. Conf., TuF2 369-374 (1999) München, Germany.
  3. G. J. Meslener, "Chromatic dispersion induced distortion of modulated monochromatic light employing direct modulation," IEEE J. Quantum Electron. QE-20, 1208-1216 (1984).
  4. U. Gliese, S. Norskov, T. N. Nielsen, "Chromatic dispersion in fiber-optic microwave and millimeter-wave links," IEEE Trans. Microw. Theory Tech. 44, 1716-1724 (1996).
  5. R. A. Griffin, P. M. Lane, J. J. O'Reilly, "Dispersion-tolerant subcarrier data modulation of optical millimeter-wave signals," Electron. Lett. 32, 2258-2260 (1996).
  6. R. P. Braun, G. Grosskopf, R. Meschenmoser, D. Rohde, F. Schmidt, G. Villino, "Optical harmonic upconversion for microwave generation in bidirectional broadband mobile communication system," Electron. Lett. 33, 1884-1886 (1997).
  7. D. Novak, Z. Ahmed, R. B. Waterhouse, R. S. Tucker, "Signal generation using pulsed semiconductor lasers for application in millimeter-wave wireless links," IEEE Trans. Microw. Theory Tech. 43, 2257-2262 (1995).
  8. A. Martínez, V. Polo, J. L. Corral, J. Martí, "Experimental demonstration of a dispersion-tolerant 155-Mb/2 BPSK data transmission at 40 GHz using an optical coherent harmonic technique," IEEE Photon. Technol. Lett. 15, 772-774 (2003).
  9. T. Nakasyotani, H. Toda, T. Kuri, K. Kitayama, "Wavelength-division-multiplexed millimiter-waveband radio-on-fiber system using a supercontinuum light source," J. Lightw. Technol. 24, 404-410 (2006).
  10. T. Koonen, A. Ng'oma, P. Smulders, H. van den Boom, I. T. Monroy, D. G. Khoe, "In-house networks using multimode polymer optical fiber fro broad-band wireless services ," Photon. Netw. Commun. 5, 177-187 (2003).
  11. M. G. Larrodé, A. M. J. Koonen, J. J. V. Olmos, A. Ng'oma, "Bidirectional radio-over-fiber link employing optical frequency multiplication," IEEE Photon. Technol. Lett. 18, 241-243 (2006).
  12. L. A. Johansson, C. P. Liu, A. J. Seeds, "A 65 km span unamplified transmission of 36 GHz radio-over-fiber signals using an optical injection phase-lock loop," IEEE Photon. Technol. Lett. 14, 1596-1598 (2002).
  13. D. B. Mortimore, "Fiber loop reflectors," J. Lightw. Technol. 6, 1217-1224 (1988).
  14. C. G. Schaeffer, M. Otto, X. Chen, "Demonstration of an efficient technique for optical generation of microwave signals based on a fiber loop mirror," Proc. Int. Top. Meeting MWP (2003) pp. 197-200.
  15. N. A. Olsson, "Lightwave systems with optical amplifiers," J. Lightw. Technol. 7, 1071-1082 (1989).
  16. I. G. Insua, K. Kojucharow, C. G. Schäffer, "Optical generation of microwave signals with ASE," Proc. Int. Top. Meeting MWP (2004) pp. 60-62.
  17. E. Voges, K. Peterman, Optische Kommunikationstechnik (Springer-Verlag, 2002) pp. 573-574.
  18. I. G. Insua, C. G. Schäffer, "Optical generation of microwave signals based on XPM of SOAs in a fiber loop," Proc. Int. Top. Meeting MWP (2006) pp. 1-4.
  19. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, 1991) pp. 698-699.
  20. E. D. Wooten, K. M. Kissa, A. Yi-Yan, E. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. Y. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Topics Quantum Electron. 6, 69-82 (2000).
  21. L. Schares, C. Schubert, C. Schmidt, H. G. Weber, L. Occhi, G. Guekos, "Phase dynamics of semiconductor optical amplifiers at 10–40 GHz," IEEE J. Quantum Electron. 39, 1394-1408 (2003).
  22. C. G. Schäffer, I. G. Insua, "Optical generation of microwave signals based on an unbalanced fiber loop mirror," Proc. IEEE MTT-S Int. Microw. Symp. (2004) pp. 283-286.

2006 (2)

T. Nakasyotani, H. Toda, T. Kuri, K. Kitayama, "Wavelength-division-multiplexed millimiter-waveband radio-on-fiber system using a supercontinuum light source," J. Lightw. Technol. 24, 404-410 (2006).

M. G. Larrodé, A. M. J. Koonen, J. J. V. Olmos, A. Ng'oma, "Bidirectional radio-over-fiber link employing optical frequency multiplication," IEEE Photon. Technol. Lett. 18, 241-243 (2006).

2003 (3)

T. Koonen, A. Ng'oma, P. Smulders, H. van den Boom, I. T. Monroy, D. G. Khoe, "In-house networks using multimode polymer optical fiber fro broad-band wireless services ," Photon. Netw. Commun. 5, 177-187 (2003).

L. Schares, C. Schubert, C. Schmidt, H. G. Weber, L. Occhi, G. Guekos, "Phase dynamics of semiconductor optical amplifiers at 10–40 GHz," IEEE J. Quantum Electron. 39, 1394-1408 (2003).

A. Martínez, V. Polo, J. L. Corral, J. Martí, "Experimental demonstration of a dispersion-tolerant 155-Mb/2 BPSK data transmission at 40 GHz using an optical coherent harmonic technique," IEEE Photon. Technol. Lett. 15, 772-774 (2003).

2002 (1)

L. A. Johansson, C. P. Liu, A. J. Seeds, "A 65 km span unamplified transmission of 36 GHz radio-over-fiber signals using an optical injection phase-lock loop," IEEE Photon. Technol. Lett. 14, 1596-1598 (2002).

2000 (1)

E. D. Wooten, K. M. Kissa, A. Yi-Yan, E. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. Y. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Topics Quantum Electron. 6, 69-82 (2000).

1999 (1)

M. Sauer, K. Kojucharow, H. Kaluzni, M. Otto, C. G. Schäffer, "Millimeter-wave wireless LAN based on simultaneous upconversion technique of optical WDM channels ," Eur. Microw. Conf., TuF2 369-374 (1999) München, Germany.

1998 (1)

G. H. Smith, D. Novak, C. Lim, "A millimeter-wave full-duplex fiber-radio star-tree architecture incorporating WDM and SCM ," IEEE Photon. Technol. Lett. 10, 1650-1652 (1998).

1997 (1)

R. P. Braun, G. Grosskopf, R. Meschenmoser, D. Rohde, F. Schmidt, G. Villino, "Optical harmonic upconversion for microwave generation in bidirectional broadband mobile communication system," Electron. Lett. 33, 1884-1886 (1997).

1996 (2)

U. Gliese, S. Norskov, T. N. Nielsen, "Chromatic dispersion in fiber-optic microwave and millimeter-wave links," IEEE Trans. Microw. Theory Tech. 44, 1716-1724 (1996).

R. A. Griffin, P. M. Lane, J. J. O'Reilly, "Dispersion-tolerant subcarrier data modulation of optical millimeter-wave signals," Electron. Lett. 32, 2258-2260 (1996).

1995 (1)

D. Novak, Z. Ahmed, R. B. Waterhouse, R. S. Tucker, "Signal generation using pulsed semiconductor lasers for application in millimeter-wave wireless links," IEEE Trans. Microw. Theory Tech. 43, 2257-2262 (1995).

1989 (1)

N. A. Olsson, "Lightwave systems with optical amplifiers," J. Lightw. Technol. 7, 1071-1082 (1989).

1988 (1)

D. B. Mortimore, "Fiber loop reflectors," J. Lightw. Technol. 6, 1217-1224 (1988).

1984 (1)

G. J. Meslener, "Chromatic dispersion induced distortion of modulated monochromatic light employing direct modulation," IEEE J. Quantum Electron. QE-20, 1208-1216 (1984).

Electron. Lett. (2)

R. A. Griffin, P. M. Lane, J. J. O'Reilly, "Dispersion-tolerant subcarrier data modulation of optical millimeter-wave signals," Electron. Lett. 32, 2258-2260 (1996).

R. P. Braun, G. Grosskopf, R. Meschenmoser, D. Rohde, F. Schmidt, G. Villino, "Optical harmonic upconversion for microwave generation in bidirectional broadband mobile communication system," Electron. Lett. 33, 1884-1886 (1997).

Eur. Microw. Conf., TuF2 (1)

M. Sauer, K. Kojucharow, H. Kaluzni, M. Otto, C. G. Schäffer, "Millimeter-wave wireless LAN based on simultaneous upconversion technique of optical WDM channels ," Eur. Microw. Conf., TuF2 369-374 (1999) München, Germany.

IEEE J. Quantum Electron. (2)

G. J. Meslener, "Chromatic dispersion induced distortion of modulated monochromatic light employing direct modulation," IEEE J. Quantum Electron. QE-20, 1208-1216 (1984).

L. Schares, C. Schubert, C. Schmidt, H. G. Weber, L. Occhi, G. Guekos, "Phase dynamics of semiconductor optical amplifiers at 10–40 GHz," IEEE J. Quantum Electron. 39, 1394-1408 (2003).

IEEE J. Sel. Topics Quantum Electron. (1)

E. D. Wooten, K. M. Kissa, A. Yi-Yan, E. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. Y. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Topics Quantum Electron. 6, 69-82 (2000).

IEEE Photon. Technol. Lett. (4)

G. H. Smith, D. Novak, C. Lim, "A millimeter-wave full-duplex fiber-radio star-tree architecture incorporating WDM and SCM ," IEEE Photon. Technol. Lett. 10, 1650-1652 (1998).

A. Martínez, V. Polo, J. L. Corral, J. Martí, "Experimental demonstration of a dispersion-tolerant 155-Mb/2 BPSK data transmission at 40 GHz using an optical coherent harmonic technique," IEEE Photon. Technol. Lett. 15, 772-774 (2003).

M. G. Larrodé, A. M. J. Koonen, J. J. V. Olmos, A. Ng'oma, "Bidirectional radio-over-fiber link employing optical frequency multiplication," IEEE Photon. Technol. Lett. 18, 241-243 (2006).

L. A. Johansson, C. P. Liu, A. J. Seeds, "A 65 km span unamplified transmission of 36 GHz radio-over-fiber signals using an optical injection phase-lock loop," IEEE Photon. Technol. Lett. 14, 1596-1598 (2002).

IEEE Trans. Microw. Theory Tech. (2)

U. Gliese, S. Norskov, T. N. Nielsen, "Chromatic dispersion in fiber-optic microwave and millimeter-wave links," IEEE Trans. Microw. Theory Tech. 44, 1716-1724 (1996).

D. Novak, Z. Ahmed, R. B. Waterhouse, R. S. Tucker, "Signal generation using pulsed semiconductor lasers for application in millimeter-wave wireless links," IEEE Trans. Microw. Theory Tech. 43, 2257-2262 (1995).

J. Lightw. Technol. (3)

D. B. Mortimore, "Fiber loop reflectors," J. Lightw. Technol. 6, 1217-1224 (1988).

T. Nakasyotani, H. Toda, T. Kuri, K. Kitayama, "Wavelength-division-multiplexed millimiter-waveband radio-on-fiber system using a supercontinuum light source," J. Lightw. Technol. 24, 404-410 (2006).

N. A. Olsson, "Lightwave systems with optical amplifiers," J. Lightw. Technol. 7, 1071-1082 (1989).

Photon. Netw. Commun. (1)

T. Koonen, A. Ng'oma, P. Smulders, H. van den Boom, I. T. Monroy, D. G. Khoe, "In-house networks using multimode polymer optical fiber fro broad-band wireless services ," Photon. Netw. Commun. 5, 177-187 (2003).

Other (6)

I. G. Insua, K. Kojucharow, C. G. Schäffer, "Optical generation of microwave signals with ASE," Proc. Int. Top. Meeting MWP (2004) pp. 60-62.

E. Voges, K. Peterman, Optische Kommunikationstechnik (Springer-Verlag, 2002) pp. 573-574.

I. G. Insua, C. G. Schäffer, "Optical generation of microwave signals based on XPM of SOAs in a fiber loop," Proc. Int. Top. Meeting MWP (2006) pp. 1-4.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, 1991) pp. 698-699.

C. G. Schaeffer, M. Otto, X. Chen, "Demonstration of an efficient technique for optical generation of microwave signals based on a fiber loop mirror," Proc. Int. Top. Meeting MWP (2003) pp. 197-200.

C. G. Schäffer, I. G. Insua, "Optical generation of microwave signals based on an unbalanced fiber loop mirror," Proc. IEEE MTT-S Int. Microw. Symp. (2004) pp. 283-286.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.